The MathNet Korea
Information Center for Mathematical Science

논문검색

Information Center for Mathematical Science

논문검색

Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg
( Vol. 64 NO.1 / (1994))
A Note on the Diophantine Equation $\it {x}$^2 + 1=$\it {dy}$^4
Chen Jian Hua,
Pages. 1-10
Abstract In this paper we prove that the Diophantine equation as in the title has at most one integer solution if $$eqsilon > 5 imes 10^7 $$,// where $eqsilon = u + uqsilon sqrt {d}$ is the least positive solution of Pell's equation $$it {x}^2 - it {dy}^2 = -1 $$.
Contents 1.Introduction
2.Some Lemmas
3.Proof of Theroem 1
Key words
Mathmatical Subject Classification