The MathNet Korea
Information Center for Mathematical Science

세미나

Information Center for Mathematical Science

세미나

아주대학교 수학과 세미나
Title Bruhat Interval polytopes
Date 2019-02-11
Speaker 박선정(아주대학교)
Sponsors 2019-02-11
Host 아주대학교
Place 팔달관 621호
Abstract Given $v,w\in \mathfrak{S}_n$ with $v\leq w$, the Richardson variety~$X^v_w$ is the intersection of the Schubert variety$X_w$ and the opposite Schubert variety $X^v$. A Bruhat interval polytope~$Q_{v,w}$ is the convex hull of all permutation vectors $x = (x(1), x(2), . . . , x(n))$ with $v\leq x\leq w$. It is known that $Q_{v^{-1},w^{-1}}$ is the moment map image of $X^v_w\subset\mathrm{Fl}(\mathbb{C}^n)$. In this talk, we discuss the properties of Bruhat interval polytopes and some open problems.