Fundamental groups of small covers

Wu, Lisu

School of Mathematical Sciences, Fudan University

The 5th Korea Toric Topology Winter Workshop

Gyeongju, Korea, January 21-23, 2019
1. Introduction

2. Presentations of Fundamental Groups

3. Main Results and Applications
An n-dimensional **small cover** is a closed n-manifold M with a locally standard \mathbb{Z}_2^n-action whose orbit space is a simple polytope P.

$$\pi : M \longrightarrow P$$
An n-dimensional small cover is a closed n-manifold M with a locally standard \mathbb{Z}_2^n-action whose orbit space is a simple polytope P.

$$\pi : M \longrightarrow P$$

The \mathbb{Z}_2^n-action on M determines a \mathbb{Z}_2^n-valued characteristic function λ on the set of facets of P

$$\lambda : \mathcal{F}(P) \triangleq \{F_1, F_2, \cdots, F_m\} \longrightarrow \mathbb{Z}_2^n$$
An **n-dimensional small cover** is a closed **n**-manifold M with a locally standard \mathbb{Z}_2^n-action whose orbit space is a simple polytope P.

$$\pi : M \longrightarrow P$$

The \mathbb{Z}_2^n-action on M determines a \mathbb{Z}_2^n-valued characteristic function λ on the set of facets of P

$$\lambda : \mathcal{F}(P) \triangleq \{F_1, F_2, \cdots, F_m\} \longrightarrow \mathbb{Z}_2^n$$

such that

$$\forall f = F_1 \cap F_2 \cap \cdots \cap F_k,$$

$$G_f \triangleq \langle \lambda(F_1), \lambda(F_2), \cdots, \lambda(F_k) \rangle \cong \mathbb{Z}_2^k.$$
Small cover

\[M = P \times \mathbb{Z}_2^n / \sim \]

where \((p, g) \sim (q, h)\) iff \(p = q, \ g^{-1}h \in G_{f(p)}\), and \(f(p)\) is the unique face of \(P\) that contains \(p\) in its relative interior, \(G_{f(p)} = \{1\}\) if \(p \in P^\circ\).
$M = P \times \mathbb{Z}_2^n / \sim$

where $(p, g) \sim (q, h)$ iff $p = q$, $g^{-1}h \in G_{f(p)}$, and $f(p)$ is the unique face of P that contains p in its relative interior, $G_{f(p)} = \{1\}$ if $p \in P^\circ$.

Define right-angled Coxeter group of P

$W = \langle s_F, \forall F \in \mathcal{F}(P) \mid s_F^2 = 1; (s_F s_{F'})^2 = 1, F \cap F' \neq \emptyset \rangle$
The Borel construction of \mathbb{Z}_2^n on M

$$BP = M \times_{\mathbb{Z}_2^n} E\mathbb{Z}_2^n$$

where $E\mathbb{Z}_2^n = (S^\infty)^n$. And $\pi_1(BP) \cong W$.
The Borel construction of \mathbb{Z}_2^n on M

$$BP = M \times_{\mathbb{Z}_2^n} E\mathbb{Z}_2^n$$

where $E\mathbb{Z}_2^n = (S^\infty)^n$. And $\pi_1(BP) \cong W$.

$M \rightarrow BP \rightarrow B\mathbb{Z}_2^n$ induces a right-split exact sequence

$$
1 \rightarrow \pi_1(M) \rightarrow W \xleftarrow{\phi} \mathbb{Z}_2^n \xrightarrow{\gamma} 1
$$

where $\phi(s_F) = \lambda(F), \forall F \in \mathcal{F}(P)$.

Cell decomposition
Generators and relations

Cell-1

Relation-1: \(x_{F,g} x_{F,g\lambda(F)} = 1 \)

Relation-2: \(x_{F,g} x_{F',g\lambda(F)} = x_{F',g} x_{F,g\lambda(F')} \)
Generators and relations

Relation-2: \(x_{F,g} x_{F',g} \lambda(F) = x_{F',g} x_{F,g} \lambda(F') \)

Relation-3: \(x_{F,g} = 1, \ p_0 \subset F \)
Presentation of $\pi_1(M, p_0)$

\[
\pi_1(M, p_0) = \langle x_{F,g}, \forall F, g \mid x_{F,g} x_{\lambda(F)} = 1; \\
x_{F,g} x_{F',g} x_{\lambda(F)} = x_{F',g} x_{F,g} x_{\lambda(F')}, \quad F \cap F' \neq \emptyset; \\
x_{F,g} = 1, \quad p_0 \in F \rangle
\]
Relation between $\pi_1(M)$ and W

$\tilde{M} = Q \times \pi_1(M)/ \sim = P \times W/ \sim$

$\textbf{Rk: } \lambda(F_1, F_2, F, F') = (e_1, e_2, e_1e_2, e_2).$
Relation between $\pi_1(M)$ and W

\[
\tilde{M} = Q \times \pi_1(M) / \sim = P \times W / \sim
\]

$\lambda(F_1, F_2, F, F') = (e_1, e_2, e_1 e_2, e_2)$.

$\chi_{F,1}(Q, 1) \mapsto (Q, x_{F,1})$
Relation between $\pi_1(M)$ and W

\[\tilde{M} = Q \times \pi_1(M) \sim P \times W \sim \]

F

F_1

F

F_1

F

F_2

$x_{F,1}(Q, 1) \mapsto (Q, x_{F,1})$

$s_F(P, 1) \mapsto (P, s_F)$

Rk: $\lambda(F_1, F_2, F, F') = (e_1, e_2, e_1 e_2, e_2)$.
Relation between $\pi_1(M)$ and W

$$\tilde{M} = Q \times \pi_1(M)/ \sim = P \times W/ \sim$$

$x_{F,1}(Q, 1) \mapsto (Q, x_{F,1})$

$s_F(P, 1) \mapsto (P, s_F)$

$x_{F,1}(P, 1) \mapsto (P, s_{F_2}s_{F_1}s_F)$

$\gamma(\lambda(F)) \cdot s_F(P, 1) \mapsto s_{F_2}s_{F_1}s_F(P, 1)$

Rk: $\lambda(F_1, F_2, F, F') = (e_1, e_2, e_1e_2, e_2)$.
Relation between $\pi_1(M)$ and W

$$\alpha : \pi_1(M, p_0) \rightarrow W$$

$$x_{F, g} \rightarrow \gamma(g\lambda(F)) \cdot \gamma(\lambda(F))s_F \cdot (\gamma(g\lambda(F)))^{-1}$$

$$= \gamma(g)s_F\gamma(g\lambda(F))$$
Relation between $\pi_1(M)$ and W

\[\alpha : \pi_1(M, p_0) \longrightarrow W \]

\[x_{F,g} \longmapsto \gamma(g\lambda(F)) \cdot \gamma(\lambda(F))s_F \cdot (\gamma(g\lambda(F)))^{-1} \]

\[= \gamma(g)s_F\gamma(g\lambda(F)) \]

\[\begin{array}{c}
1 \longrightarrow \pi_1(M) \xrightarrow{\alpha} W \xrightarrow{\phi} \mathbb{Z}_2^n \longrightarrow 1
\end{array} \quad (1) \]
Idea

\[M \quad \pi_1(M) \]

\[P \quad W \]

\[\pi \quad \alpha \]
Idea

\[
\begin{array}{ccc}
M & \xrightarrow{\pi} & \pi_1(M) \\
\downarrow{\pi} & & \downarrow{\alpha}
\end{array}
\]

\[
\begin{array}{ccc}
P & \xrightarrow{\pi_1(M)} & W
\end{array}
\]
Idea
Idea
Idea

- M to $\pi_1(M)$
- π to α
- P to W
- Hard to easy

For any proper face f of P,

- Define $\mathcal{F}(f^\perp) \triangleq \{ F \in \mathcal{F}(P) \mid \text{dim}(f \cap F) = \text{dim}(f) - 1 \}$. So $\mathcal{F}(f^\perp)$ consists of those facets of P that intersect f transversely.
For any proper face f of P,

- Define $\mathcal{F}(f^{\perp}) \triangleq \{ F \in \mathcal{F}(P) \mid \dim(f \cap F) = \dim(f) - 1 \}$. So $\mathcal{F}(f^{\perp})$ consists of those facets of P that intersect f transversely.

- A submanifold Σ in M is called π_1-injective if the inclusion $\Sigma \hookrightarrow M$ induces a monomorphism in the fundamental group.
For any proper face f of P,

- Define $\mathcal{F}(f^\perp) \triangleq \{ F \in \mathcal{F}(P) \mid \dim(f \cap F) = \dim(f) - 1 \}$. So $\mathcal{F}(f^\perp)$ consists of those facets of P that intersect f transversely.

- A submanifold Σ in M is called π_1-injective if the inclusion $\Sigma \hookrightarrow M$ induces a monomorphism in the fundamental group.

Theorem (Wu-Yu, 2017)

Let M be a small cover over a simple polytope P and f be a proper face of P. The following two statements are equivalent.

- The facial submanifold M_f is π_1-injective.
- For any $F, F' \in \mathcal{F}(f^\perp)$, we have $f \cap F \cap F' \neq \emptyset$ whenever $F \cap F' \neq \emptyset$.
A simple polytope P is called flag if a collection of facets of P has common intersection whenever they pairwise intersect.
A simple polytope P is called flag if a collection of facets of P has common intersection whenever they pairwise intersect.

Proposition (Wu-Yu, 2017)

Let M be a small cover over P. Then P is flag if and only if every facial submanifold of M is π_1-injective.
For a 3-dimensional simple polytope P,

- A k-circuit in P is a simple loop on the boundary of P which intersects transversely with the interior of exactly k distinct edges,
For a 3-dimensional simple polytope P,

- A *k-circuit* in P is a simple loop on the boundary of P which intersects transversely with the interior of exactly k distinct edges, and a k-circuit is called *prismatic* if the endpoints of those edges are distinct.
For a 3-dimensional simple polytope P,

- A **k-circuit** in P is a simple loop on the boundary of P which intersects transversely with the interior of exactly k distinct edges, and a k-circuit is called **prismatic** if the endpoints of those edges are distinct.

- A **k-belt** in P is a set of k distinct faces F_1, \cdots, F_k of P such that $F_i \cap F_{i+1} \neq \emptyset$ for $1 \leq i \leq k-1$, $F_k \cap F_1 \neq \emptyset$, and any three faces in the belt have no common intersection.
For a 3-dimensional simple polytope P,

- A **k-circuit** in P is a simple loop on the boundary of P which intersects transversely with the interior of exactly k distinct edges, and a k-circuit is called **prismatic** if the endpoints of those edges are distinct.

- A **k-belt** in P is a set of k distinct faces F_1, \cdots, F_k of P such that $F_i \cap F_{i+1} \neq \emptyset$ for $1 \leq i \leq k - 1$, $F_k \cap F_1 \neq \emptyset$, and any three faces in the belt have no common intersection.

- Each k-belt can determine a prismatic k-circuit.
For a 3-dimensional simple polytope P,

- A **k-circuit** in P is a simple loop on the boundary of P which intersects transversely with the interior of exactly k distinct edges, and a k-circuit is called **prismatic** if the endpoints of those edges are distinct.

- A **k-belt** in P is a set of k distinct faces F_1, \ldots, F_k of P such that $F_i \cap F_{i+1} \neq \emptyset$ for $1 \leq i \leq k-1$, $F_k \cap F_1 \neq \emptyset$, and any three faces in the belt have no common intersection.

- Each k-belt can determine a prismatic k-circuit. A prismatic 3-circuit determines a 3-belt;
For a 3-dimensional simple polytope P,

- A **k-circuit** in P is a simple loop on the boundary of P which intersects transversely with the interior of exactly k distinct edges, and a k-circuit is called **prismatic** if the endpoints of those edges are distinct.

- A **k-belt** in P is a set of k distinct faces F_1, \cdots, F_k of P such that $F_i \cap F_{i+1} \neq \emptyset$ for $1 \leq i \leq k - 1$, $F_k \cap F_1 \neq \emptyset$, and any three faces in the belt have no common intersection.

- Each k-belt can determine a prismatic k-circuit. A prismatic 3-circuit determines a 3-belt; and if there is no prismatic 3-circuit, then a prismatic 4-circuit determines a 4-belt.
Let M be a 3-small cover over $P(\neq \Delta^3)$, the following facts was referred in DJ’s paper(corrected):

- If there exist prismatic 3-circuits in P, then M can be decomposed into prime pieces glued along S^2 or $\mathbb{R}P^2$.
Applications

Let M be a 3-small cover over $P(\neq \Delta^3)$, the following facts was referred in DJ’s paper (corrected):

- If there exist prismatic 3-circuits in P, then M can be decomposed into prime pieces glued along S^2 or \mathbb{RP}^2.

- If there is no prismatic 3-circuit but prismatic 4-circuits in P, then M can be decomposed into atoroidal and Seifert fibered pieces glued along tori or Klein bottles.
Let M be a 3-small cover over $P(\neq \Delta^3)$, the following facts was referred in DJ’s paper(corrected):

- If there exist prismatic 3-circuits in P, then M can be decomposed into prime pieces glued along S^2 or $\mathbb{R}P^2$.
- If there is no prismatic 3-circuit but prismatic 4-circuits in P, then M can be decomposed into atoroidal and Seifert fibered pieces glued along tori or Klein bottles.
- If there is no prismatic 3 or 4-circuit in P, then M is hyperbolic.
Let M be a connected 3-manifold.

- M is called **prime** if $M = M_1 \# M_2$ implies $M_1 = S^3$ or $M_2 = S^3$.
Let M be a connected 3-manifold.

- M is called **prime** if $M = M_1 \# M_2$ implies $M_1 = S^3$ or $M_2 = S^3$.

- M is called **irreducible** if every embedded 2-sphere bounds a 3-ball. An prime 3-manifold is irreducible except S^2-bundle over S^1.

Theorem (Kneser, Milnor, Prime Decomposition Theorem)

Each compact 3-manifold M can factor as a connected sum of prime manifolds. This decomposition is unique under the assumption that M is orientable.
Let M be a connected 3-manifold.

- M is called prime if $M = M_1 \# M_2$ implies $M_1 = S^3$ or $M_2 = S^3$.
- M is called irreducible if every embedded 2-sphere bounds a 3-ball. An prime 3-manifold is irreducible except S^2-bundle over S^1.

Theorem (Kneser, Milnor, Prime Decomposition Theorem)

Each compact 3-manifold M can factor as a connected sum of prime manifolds. This decomposition is unique under the assumption that M is orientable.
Proposition

Let M be a 3-dimensional small cover over a simple polytope P, then M is irreducible if and only if there is no prismatic 3-circuit in P.
Proposition

Let M be a 3-dimensional small cover over a simple polytope P, then M is irreducible if and only if there is no prismatic 3-circuit in P.

In particular, the prime decomposition of an oriented 3-small cover is equivalent to cutting surgery along prismatic 3-circuits in P.
A compact 3-manifold M is called atoroidal if it contains no essential torus.
A compact 3-manifold M is called \textit{atoroidal} if it contains no essential torus.

A manifold M is called \textit{hyperbolic} if it admits a complete Riemannian metric of constant sectional curvature -1.
A compact 3-manifold M is called atoroidal if it contains no essential torus.

A manifold M is called hyperbolic if it admits a complete Riemannian metric of constant sectional curvature -1.

Theorem (Jaco-Shalen-Johannson, Torus Decomposition Theorem)

For an oriented, irreducible, closed 3-manifold, there exists a (possibly empty) collection of disjointly embedded incompressible tori T_1, \cdots, T_m such that each component of M cut along $T_1 \cup \cdots \cup T_m$ is atoroidal or Seifert fibered, and a minimal such collection T_1, \cdots, T_m is unique up to isotopy.
Theorem (Perelman, Geometrization Theorem)

Let M be a irreducible closed 3-manifold. There exists a (possibly empty) collection of disjointly embedded incompressible surface S_1, \ldots, S_m which are either tori or Klein bottles, such that each component of M cut along $S_1 \cup \cdots \cup S_m$ is geometric. Any such collection of tori with a minimal number of components is unique up to isotopy.
Theorem (Perelman, Geometrization Theorem)

Let M be an irreducible closed 3-manifold. There exists a (possibly empty) collection of disjointly embedded incompressible surfaces S_1, \ldots, S_m which are either tori or Klein bottles, such that each component of M cut along $S_1 \cup \cdots \cup S_m$ is geometric. Any such collection of tori with a minimal number of components is unique up to isotopy.

Proposition

Let M be a 3-small cover over a simple polytope P, then M is atoroidal if and only if there is no 4-belt in P. In particular, the JSJ decomposition or geometric decomposition of a irreducible 3-small cover is equivalent to cutting surgery along prismatic 4-circuits in P.
Theorem (Thurston, Hyperbolization Theorem)

Each irreducible, atoroidal, closed 3-manifold with infinite fundamental group is hyperbolic.
Theorem (Thurston, Hyperbolization Theorem)

Each irreducible, atoroidal, closed 3-manifold with infinite fundamental group is hyperbolic.

Proposition

Let M be a 3-small cover over a simple polytope $P(\neq \Delta^3)$, then M is hyperbolic if and only if there is no prismatic 3 or 4-circuit in P.
Proposition (Wu-Yu, 2017)

A small cover M over a simple 3-polytope P can admit a Riemannian metric with nonnegative scalar curvature if and only if P is combinatorially equivalent to the cube $[0, 1]^3$ or a polytope obtained from Δ^3 by a sequence of vertex cuts.
A classification for 3-small cover

3-belt (pris 3-circuit)

- YES
 - reducible
 - oriented
 - Prime decomposition
 - $\text{vc}^k(\Delta^3), k \geq 1$
 - > 0 scalar curvature
 - ONLY
 - irreducible
 - spherical
 - $\mathbb{R}P^3(\Delta^3)$
 - atoroidal
 - Real Bott(I^3)
 - flat
 - NO
 - $|\pi_1| = \infty$
 - hyperbolic
 - $|\pi_1| < \infty$

4-belt

- YES
 - toroidal
 - JSJ or geometric decomposition
 - ONLY
 - no 3-belt

ONLY
End of Talk

The 5th Korea Toric Topology Winter Workshop

Gyeongju, Korea. 10:30 - 11:10 January 22, 2019
Some references

- Buchstaber and Panov, Torus actions and their applications in topology and combinatorics. (2002).
- Kapovich, Hyperbolic manifolds and discrete groups. (2010).
Email: wulisuwulisu@qq.com
Homepage: http://algebraic.top/