Volume growth in the component of the fibered Dehn twist

Joontae Kim1 with Myeonggi Kwon2 and Junyoung Lee3

1,2Seoul National University
3Tel Aviv University

The 4th Korea Toric Topology Winter Workshop, December 2016
Contents

- Slow volume growth
- Liouville domain and Fibered Dehn twist
- Wrapped Floer homology
- Main Result
Definition of the slow volume growth

- Let \((M^n, g)\) be a Riemannian manifold.
- Let \(\phi : M \rightarrow M\) be a compactly supported diffeomorphism, i.e. \(\text{supp}(\phi) = \{x \in M \mid \phi(x) \neq x\}\) is compact.

Definition

The \(i\)-dimensional slow volume growth of \(\phi\) is defined to be

\[
s_i(\phi) = \sup_{\sigma \subset M: \ i\text{-cube}} \liminf_{m \rightarrow \infty} \frac{\log \mu_g(\phi^m(\sigma))}{\log m} \in [0, \infty],
\]

where \(\mu_g\) is the volume measure induced by a metric \(g\).

Intuitively, this measures the complexity of a given diffeomorphism.
Examples

1. Let $\phi = id$ on M^n. Then $s_i(\phi) = 0$ for all $i = 1, 2, \cdots, n$.

2. Consider $M = S^1 \times \mathbb{R}$ and let $\tau : M \to M$ be a twisting map. Denote $L_x = \{x\} \times [-1, 1]$ the fiber at $x \in S^1$. Then $s_1(\tau) \geq 1$ and $s_2(\tau) = 0$. (In fact, τ is a **Dehn twist**.)

We are interested in a lower bound for the slow volume growth.
Observe that $|\tau^m(L_x) \cap L_y| = m$ for all $y \in S^1$ with $x \neq y$.

$$\Rightarrow \quad \mu(\tau^m(L_x)) \geq m \cdot \mu(S^1)$$

$$\Rightarrow \quad s_1(\tau) \geq 1.$$

This is adaptable to a symplectic setup.

Symplectic view point

- View $\tau^m(L_x) \cap L_y$ as an intersection of two Lagrangians in $T^* S^1 \cong S^1 \times \mathbb{R}$.

- Recall that (chain level) generators of Lagrangian Floer homology $HF_* (\tau^m(L_x), L_y)$ are intersection points.

- $\dim HF_* (\tau^m(L_x), L_y)$ gives a lower bound for the number of intersection points.

- Apply the previous to obtain a lower bound for $s_1(\tau)$.
Liouville domains

Definition

A symplectic manifold \((W, \omega)\) with boundary is called a **Liouville domain** if

- There exists a 1-form \(\lambda\) on \(W\) such that \(\omega = d\lambda\).
- Let \(X\) be the vector field \(d\lambda\)-dual to \(\lambda\). Then \(X\) points outward along boundary \(\partial W\).

Facts

- If \((W, \lambda)\) is a Liouville domain, then \((\partial W, \xi = \ker \lambda|_{\partial W})\) is a contact manifold. (which is an odd dimensional cousin of symplectic manifolds.)
- There is a **Reeb vector field** \(R\) on \(\partial W\), i.e. \(d\alpha(R, \cdot) = 0\) and \(\alpha(R) = 1\), where \(\alpha\) is a contact form on \((\partial W, \xi)\).
Liouville domains with \((P)\)

We need a special \(S^1\)-action on the boundary to consider the fibered Dehn twist.

Definition

We say that a Liouville domain \((W, \lambda)\) satisfies the condition \((P)\) if contact boundary has a periodic Reeb flow, i.e.
\[
\text{Flow}^R_t : \partial W \to \partial W \text{ is periodic.}
\]

Hence, such a Reeb flow induces an \(S^1\)-action on \(\partial W\).
Definition

Let \((W, \lambda)\) be a Liouville domain with \((P)\). A symplectomorphism \(\tau : W \to W\) is called the **fibered Dehn twist on** \(W\) if it is constructed as following picture:

The Reeb condition on the \(S^1\)-action guarantees that \(\tau\) is in fact a symplectomorphism.
Examples of Liouville domains with \((P)\)

Examples

1. \(W := (D^{2n}, \omega_0)\) is the standard \(2n\)-ball and \(\partial W = S^{2n-1} \to \mathbb{C}P^{n-1}\) is the Hopf fibration.

2. Consider \((M^{2n}, \omega)\) : closed symplectic manifold with \([\omega] \in H^2(M; \mathbb{Z})\).
 - \(Q^{2n-2} \subset M\) : symplectic hypersurface PD to \(k[\omega], k \geq 1\).

 Then, \(W := M \setminus \nu_M(Q)\) is the complement of a hypersurface and \(\partial W\) is a \(S^1\)-bundle over \(Q\) with \(c_1 = k[\omega|_Q]\).

3. Let \(A_k = \{z_0^{k+1} + z_1^2 + \cdots + z_n^2 = 1\} \subset \mathbb{C}^{n+1}\) be the \(A_k\)-singularity. Then, \(W := A_k \cap Ball^{2n+2}_r\) and \(\partial W\) is the link of \(A_k\)-singularity.
Question

Is there an uniform lower bound for the slow volume growth of symplectomorphisms on a Liouville domain (W, λ) with (P)?

- We answer this question on the component of the fibered Dehn twist τ in $\text{Symp}(W, \partial W)$.
- More precisely, we examine a lower bound for s_n on symplectomorphisms which are symplectically isotopic to τ^k.

Uniform lower bounds are obtained in the following cases:

- closed symplectic manifolds with $\pi_2 = 0$ by [Polterovich 02’].
- Dehn-Seidel twists by [Frauenfelder and Schlenk ’05].
Wrapped Floer homology $HW_*(L; W)$

Let (W, λ) be a Liouville domain and $L \subset W$ an admissible Lagrangian.

- By attaching suitable infinite cone, we obtain completions $(\hat{W}, \hat{\lambda})$ and $\hat{L} \subset \hat{W}$.
- $H : \hat{W} \to \mathbb{R}$: an admissible Hamiltonian
- $J : a \ d\hat{\lambda}$-compatible almost complex structure on \hat{W}.
- $\Omega(\hat{W}, \hat{L}) = \{x : [0, 1] \to \hat{W} \mid x(0), x(1) \in \hat{L}\}$: a path space from \hat{L} to itself.
- the action functional of H:

$$A_H : \Omega(\hat{W}, \hat{L}) \to \mathbb{R}$$

$$x \mapsto -\int_0^1 x^* \hat{\lambda} + \int_0^1 H(x(t)) dt$$

Then, $\text{Crit}(A_H)$ corresponds to the set of Hamiltonian chords. Recall that $x \in \Omega(\hat{W}, \hat{L})$ is a Hamiltonian chord if $\dot{x} = X_H \circ x$.

Crit pt of $A_H \leftrightarrow$ Ham chord \to intersection pt of $\hat{L} \cap \text{Flow}^X_1(\hat{L})$
Wrapped Floer homology $HW_*(L; W)$

- (Chain group)

$$CW_i(H) = \bigoplus_{x : \text{Ham chord s.t. } \mu(x) = i} \mathbb{Z}_2 \langle x \rangle$$

is a \mathbb{Z}_2-vector space generated by Hamiltonian chords with Maslov index $i \in \mathbb{Z}$.

- (Boundary map)

$$\partial : CW_i(H) \longrightarrow CW_{i-1}(H)$$

$$x \longmapsto \sum_{\mu(x) - \mu(y) = 1} \#\mathcal{M}(x, y) \cdot y,$$

where $\mathcal{M}(x, y)$ is the moduli space of Floer strips from x to y.

- For a generic (H, J), $HW_*(H, J) := H_*(CW_*(H), \partial)$ is the wrapped Floer homology of (H, J).
Definition

The direct limit \(\text{HW}_*(L; W) := \lim_{\text{slope}(H) \to \infty} \text{HW}_*(H, J) \) is called the wrapped Floer homology of \((W, L)\).

- It does not depend on the choice of \((H, J)\).
- It is invariant up to a Hamiltonian isotopy.
- There are two types of generators on chain levels:
 1. Hamiltonian chords inside \(W\).
 2. Hamiltonian chords on the infinite cone \([1, \infty) \times \partial W\).
- If \((W, \lambda)\) is a Liouville domain with \((P)\), then generators of type two correspond to intersection points of \(L \cap \tau(L), L \cap \tau^2(L), L \cap \tau^3(L), \ldots\).

Hence, the dimension of \(\text{HW}_*(L; W) \) gives a lower bound for intersection points of \(L \cap \tau(L), L \cap \tau^2(L), L \cap \tau^3(L), \ldots\).
Main Result

Main theorem A

Let \((W^{2n}, \lambda)\) be a Liouville domain with \((P)\) and \(H^1_c(W; \mathbb{R}) = 0\). Suppose that there is an admissible Lagrangian \(L \subset W\) such that

- \(L\) is diffeomorphic to \(D^n\).
- \(\liminf_{c \to \infty} \frac{\dim HW^< c(L; W)}{c} > 0\).

Then, for any \(\phi \in \text{Symp}(W, \partial W)\) with \(\phi \sim_{\text{sympl}} \tau^k\) for some \(k \geq 1\), we have \(s_n(\phi) \geq 1\).

Main theorem B

By the Morse-Bott spectral sequence for \(HW_*(L; W)\), we have various examples applied to theorem A.
Let $\rho : M \to M$ be an anti-symplectic involution on a symplectic manifold (M, ω), i.e. $\rho^2 = id$ and $\rho^* \omega = -\omega$. Then, $L := Fix(\rho) \subset M$ is a (real) Lagrangian if $L \neq \emptyset$.

Examples

1. $W := (D^{2n}, \omega_0)$: the standard $2n$-ball and the Hopf fibration $\partial W = S^{2n-1} \to \mathbb{C}P^{n-1}$ and $L = D^n \implies HW_*(L; W) = 0$.

2. Consider
 - (M^{2n}, ω, ρ): closed, monotone, real, symplectic manifold with $[\omega] \in H^2(M; \mathbb{Z})$.
 - $Q^{2n-2} \subset M$: ρ-invariant symplectic hypersurface PD to $k[\omega]$, $k \geq 1$.
 Then, complement $W := M \setminus \nu_M(Q)$ and $L = Fix(\rho|_W)$.

3. Let $A_k = \{z_0^{k+1} + z_1^2 + \cdots + z_n^2 = 1\} \subset \mathbb{C}^{n+1}$ be the A_k-singularity. Then, $W := A_k \cap Ball^{2n+2}_r$ and $L = \mathbb{R}^{n+1} \cap W$.

Joontae Kim

Volume growth in the component of the fibered Dehn twist
Fortunately, we did not use a nuclear bomb to kill mosquito!

Genuine symplectic phenomenon

There are examples satisfying
- Main theorem.
- τ^k is smoothly isotopic to the identity map id for some $k \geq 1$.

Recall that $s_n(id) = 0$.

- Smooth isotopies do not guarantee an uniform lower bound for s_n.
- But, symplectic isotopies (from τ^k) guarantee the uniform lower bound for s_n.
Thank you for your attention. Again, I appreciate organizers.