Wedge operation and classification of toric spaces

Hanchul Park (KIAS)
hpark@kias.re.kr
jointly with Suyoung Choi (Ajou Univ.)

The 4th Korea Toric Topology Winter Workshop
The Unipark, Jeju Island, South Korea
December 26–29, 2016
Toric spaces and Characteristic functions

- K: abstract $(n - 1)$-dim. simplicial (or precisely PL) sphere
- $V(K)$: set of vertices of K

Definition (Characteristic functions)

A **characteristic function** over K is a map $\lambda: V(K) \rightarrow \mathbb{Z}^n$ such that for every maximal face $\{v_1, \ldots, v_n\}$ of K,

$$\det(\lambda(v_1) \cdots \lambda(v_n)) = \pm 1.$$

A **mod 2 characteristic function** over K is a map $\lambda: V(K) \rightarrow \mathbb{Z}_2^n$ such that for every maximal face $\{v_1, \ldots, v_n\}$ of K,

$$\det(\lambda(v_1) \cdots \lambda(v_n)) = 1.$$

The pair (K, λ) is called a **characteristic pair** and K is the underlying complex.
Toric spaces and Characteristic functions

Let us consider the following families (up to D-J equivalence):

- Toric manifolds,
- Omnioriented quasitoric manifolds,
- Omnioriented topological toric manifolds with restricted $(S^1)^n$-action.

They bijectively correspond to:

- Characteristic functions which come from fans,
- Characteristic functions over polytopal spheres,
- Characteristic functions over star-shaped spheres, resp,

up to change of basis of \mathbb{Z}^n. Toric spaces are these kinds of manifolds determined by chr. ftns.
Classification of toric spaces

(1) Topological classification (up to diffeomorphism)
- Very hard
- Done for: toric surfaces, Bott manifolds of stage ≤ 4, generalized Bott manifolds of stage ≤ 2.

(2) Classification up to D-J equivalence
- Still hard but combinatorial
- Equivalent to classification of (K, λ) (up to basis change)
- Done for: toric surfaces, generalized Bott manifolds of any stage, toric manifolds with Picard number ≤ 3.
- **Wedge operation** is very useful for this classification
Wedge operation

- K: simplicial complex on $V(K)$
- $K_1 \star K_2 = \{ \sigma_1 \amalg \sigma_2 \mid \sigma_1 \in K_1, \sigma_2 \in K_2 \}$: simplicial join

Definition

The (simplicial) wedge of K at $v \in V(K)$ is

$$\text{wed}_v K = (I \star \text{Lk}_K\{v\}) \cup (\partial I \star (K \setminus \{v\})),$$

where I is a 1-simplex whose vertices are v_1 and v_2.

![Diagram showing wedge operation](image)
Wedge operation

\[m = |V(K)| \]

A consecutive application of \(\text{wed} \) is denoted by \(K(J) = K(j_1, \ldots, j_m) \).

\[K = K(1, \ldots, 1) \]
\[\text{wed}_1 K = K(2, 1, \ldots, 1) \]
\[\text{wed}_2(\text{wed}_1 K) = \text{wed}_1(\text{wed}_2 K) = K(2, 2, 1, \ldots, 1) \]
\[\text{wed}_{11}(\text{wed}_1 K) \cong \text{wed}_{12}(\text{wed}_1 K) \cong K(3, 1, \ldots, 1) \]
Wedge operation

If $K = \partial P^*$ is polytopal, P is a simple n-polytope and \exists a dual wedge

$$F \rightarrow \text{wed}_F P$$

s.t. $\partial(\text{wed}_F P)^* = \text{wed}_F^* K$.

Observe:

- $\text{wed}_F P$ has two faces isomorphic to P.
- If $\text{wed}_F P$ admits a QTM $M = M(\text{wed}_F P, \Lambda)$, called a wedge manifold, then M has two chr. submfds, or the sides of M,

$$M_1 = M(P, \lambda_1) \text{ and } M_2 = M(P, \lambda_2).$$

This is also true for non-polytopal K.
In general, let us assume:

- K: $(n - 1)$-dim PL sphere, $v \in V(K)$
- $M = M(\text{wed}_v K, \Lambda)$: wedge manifold
- M_1, M_2: sides of M.

Theorem (Choi-P)

The D-J type of M is uniquely determined by those M_1 and M_2. Moreover,

1. M is a TTM \iff M_1 and M_2 are TTM.
2. M is a QTM \iff M_1 and M_2 are QTM.
3. M is a toric manifold \iff M_1 and M_2 are toric manifolds.

Theorem (Choi-P)

The same holds when Λ is a mod 2 chr. ftn. Moreover,

1. M is an RTTM \iff M_1 and M_2 are RTTM.
2. M is a small cover \iff M_1 and M_2 are small covers.
Theorem (Choi-P)

The D-J type of M is uniquely determined by those M_1 and M_2. Moreover,

1. M is a TTM \iff M_1 and M_2 are TTM.
2. M is a QTM \iff M_1 and M_2 are QTM.
3. M is a toric manifold \iff M_1 and M_2 are toric manifolds.

Theorem (Choi-P)

The same holds when Λ is a mod 2 chr. ftn. Moreover,

1. M is an RTTM \iff M_1 and M_2 are RTTM.
2. M is a small cover \iff M_1 and M_2 are small covers.

A nonempty family \mathcal{F} of toric spaces is wedge-closed if

1. The set of underlying complexes is closed under wed,
2. $M \in \mathcal{F} \iff M_1, M_2 \in \mathcal{F}$.

Then TTM, QTM, TM, RTTM, and small covers are wedge-closed. (What about others?)
Definition

Fix a wedge-closed family \mathcal{F}. The diagram of K, $D(K, \mathcal{F})$, is the triple (V, E, S) s.t.

1. $V = \text{the set of D-J classes over } K \text{ in } \mathcal{F}$,
2. $E = \text{the set of D-J classes over } \text{wed}_v K \text{ in } \mathcal{F}, \ v \in V(K)$,
3. $S = \text{the set of D-J classes over } \text{wed}_w(\text{wed}_v K) \text{ in } \mathcal{F}, \ v \neq w \in V(K)$.

Note: The wedged manifold $M(\text{wed}_v K, \Lambda) \in E$, whose two sides are $M(K, \lambda_1)$ and $M(K, \lambda_2)$, corresponds to the colored edge

$$\lambda_1 \overset{v}{\longrightarrow} \lambda_2.$$

Similarly, S is a set of some subsquares

$$\begin{array}{c}
\lambda_1 \overset{v}{\longrightarrow} \lambda_2 \\
\downarrow w \quad \downarrow w \\
\lambda_3 \overset{v}{\longrightarrow} \lambda_4
\end{array}$$
Diagram of K

Definition
Fix a wedge-closed family \mathcal{F}. The diagram of K, $D(K, \mathcal{F})$, is the triple (V, E, S) s.t.

1. $V =$ the set of D-J classes over K in \mathcal{F},
2. $E =$ the set of D-J classes over $\text{wed}_v K$ in \mathcal{F}, $v \in V(K)$,
3. $S =$ the set of D-J classes over $\text{wed}_w (\text{wed}_v K)$ in \mathcal{F}, $v \neq w \in V(K)$.

Note: To compute $D(K, \mathcal{F})$, we only have to deal with finitely many spheres. Moreover, V, E, and S are finite sets in mod 2 cases.

Theorem (Choi-P, Classification-by-Wedge)

\exists a combinatorial algorithm to find all toric spaces over $K(J)$ in \mathcal{F} using $D(K, \mathcal{F})$.

Note: wedge-closedness is needed for Classification-by-Wedge.
Wedge and classification

Definition
A simplicial complex K is a **seed** if K cannot be written as a simplicial wedge.

The basic strategy is
1. Find **seeds** K supporting toric spaces
2. Apply **Classification-by-Wedge** for each seed K

Recall some notable classification results:
- smooth toric surfaces
- generalized Bott manifolds (by Choi-Masuda-Suh)
- toric manifolds with Picard number 3 (by Batyrev)
Wedge and classification

Recall some notable classification results:

- smooth toric surfaces
- generalized Bott manifolds (by Choi-Masuda-Suh)
- toric manifolds with Picard number 3 (by Batyrev)

Their underlying complexes are

- the polygon ∂P_m
- the dual of a product of simplices:

$$\partial(\Delta^{n_1} \times \cdots \times \Delta^{n_k})^* = \partial \Delta^{n_1} \star \cdots \star \partial \Delta^{n_k}$$

- K^{n-1} with $(n + 3)$ vertices, resp.
Wedge and classification

1. Smooth toric surfaces over ∂P_m
2. Gen. Bott mfds over $\partial(\Delta^{n_1} \times \cdots \times \Delta^{n_k})^*$
3. Toric mfds of Picard number 3

Note:

1. (2) and (3) are wedge-closed. Seeds for (2) and (3) supporting toric manifolds are:
 - For (2): $\partial(I \times \cdots \times I)^*$ = the duals of cubes
 - For (3): $\partial(I^3)^*$, ∂P_5.

2. Classification-by-Wedge works for (2) and (3), reproving the original works.

3. For (3), CbW does not need projectivity, unlike Batyrev’s original work.
Some polytopes and spheres

<table>
<thead>
<tr>
<th>$n \backslash m$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Δ^1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$P_3 = \Delta^2$</td>
<td>$P_4 = I^2$</td>
<td>P_5</td>
<td>P_6</td>
<td>P_7</td>
<td>P_8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Δ^3</td>
<td>$\Delta^2 \times \Delta^1 = \text{wed} P_4$</td>
<td>I^3</td>
<td>$\text{wed} P_5$</td>
<td>$\text{vc}(I^3)$</td>
<td>$\text{wed} P_6$</td>
<td>\ldots</td>
</tr>
<tr>
<td>4</td>
<td>Δ^4</td>
<td>$\Delta^3 \times \Delta^1$</td>
<td>$\Delta^2 \times \Delta^2$</td>
<td>$C(4, 7)^*$</td>
<td>I^4</td>
<td>B^*</td>
<td>\ldots</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Δ^5</td>
<td>$\Delta^4 \times \Delta^1$</td>
<td>$\Delta^3 \times \Delta^2$</td>
<td></td>
<td>\ldots</td>
</tr>
</tbody>
</table>

- **Colored** ones are seeds.
- It looks very natural to study wedges of polygons, since polygons are very basic family of seeds.
Wedges of polygons and wedge-closedness

Classification-by-Wedge works well to the polygons, at least for toric manifolds and small covers. (Note: toric manifolds and small covers are wedge-closed families.)

The classification (nontrivially) implies

Theorem (Choi-P)

Every toric manifold over $\partial P_m(J)$ is projective.

It gives a partial affirmative answer to the wedge-closedness question on projective toric mfds.

- $M = M(\text{wed}_v K, \Lambda)$: a wedge manifold
- $M_1 = M(K, \lambda_1), M_2 = M(K, \lambda_2)$: two sides of M

Question (Wedge-closedness question on PTM)

M is a PTM $\iff M_1$ and M_2 are PTM?
The classification also implies:

Corollary (Failure of wedge-closedness of RTM)

For sufficiently large m, \exists a small cover M over $\text{wed}_v P_m$ which is not a RTM even though its two faces are RTM.

Sketch of proof.

- All small covers over P_m are RTM except
 \[
 \begin{pmatrix}
 1 & 0 & 1 & 0 & \cdots & 1 & 0 \\
 0 & 1 & 0 & 1 & \cdots & 0 & 1
 \end{pmatrix}.
 \]

- On the other hand, there are much fewer RTM over $\text{wed}_v P_m$ than small covers.
Seeds for each $m - n$

<table>
<thead>
<tr>
<th>$n \backslash m$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Δ^1</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>2</td>
<td>$P_3 = \Delta^2$</td>
<td>$P_4 = I^2$</td>
<td>P_5</td>
<td>P_6</td>
<td>P_7</td>
<td>P_8</td>
<td> </td>
</tr>
<tr>
<td>3</td>
<td>Δ^3</td>
<td>$\Delta^2 \times \Delta^1$ = wed P_4</td>
<td>I^3 wed P_5</td>
<td> </td>
<td>vc(I^3) wed P_6</td>
<td> </td>
<td>\ldots</td>
</tr>
<tr>
<td>4</td>
<td>Δ^4</td>
<td>$\Delta^3 \times \Delta^1$</td>
<td>$\Delta^2 \times I^2$ & $C(4, 7)^*$</td>
<td>$\Delta^4 \times \Delta^1$ & wed P_5</td>
<td>I^4 & B^*</td>
<td> </td>
<td>\ldots</td>
</tr>
<tr>
<td>5</td>
<td>Δ^5</td>
<td> </td>
<td>$\Delta^4 \times \Delta^1$ & $\Delta^3 \times \Delta^2$</td>
<td> </td>
<td> </td>
<td> </td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Note:

<table>
<thead>
<tr>
<th>$m - n$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>"good" seeds</td>
<td>Δ^1</td>
<td>I^2</td>
<td>$I^3, P_5, C(4, 7)^*$</td>
<td>???</td>
</tr>
</tbody>
</table>
Finiteness of good seeds

\(K: (n - 1) \)-dim. PL sphere with \(m \) vertices

Definition (Good seeds)

A seed \(K \) is **good** if \(K \) admits a mod 2 chr. ftn. or equivalently,
\[
s_{\mathbb{R}}(K) = m - n.
\]

Theorem (Choi-P)

For fixed \(m - n \geq 3 \), \(\exists \) only **finitely many good seeds** \(K^{n-1} \) with \(m \) vertices. More precisely,
\[
m \leq 2^{m-n} - 1.
\]

Note: there is a hierarchy of good seeds. (\(s(K) = m - n \), Polytopal, supporting toric mfds, etc.)
Finiteness of good seeds

\(K\): \((n - 1)\)-dim. PL sphere with \(m\) vertices

Theorem (Choi-P)

For fixed \(m - n \geq 3\), \(\exists\) only finitely many good seeds \(K^{n-1}\) with \(m\) vertices. More precisely,

\[m \leq 2^{m-n} - 1. \]

Note: The theorem proves the following conjecture of Batyrev. The theorem implies that, for the smooth case, the analogue of Batyrev’s conjecture holds regardless of the geometry.

Conjecture (Batyrev (1991))

For any toric manifold \(X_\Sigma\) of Picard number \(\rho\), there exists a constant \(N(\rho)\) depending only on \(\rho\) such that the number of primitive collections in \(G(\Sigma)\) is less than \(N(\rho)\).
Future works

\[K^{n-1} \text{ with } m \text{ vertices} \]

<table>
<thead>
<tr>
<th>(m - n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>good seeds</td>
<td>(\Delta^1)</td>
<td>(I^2)</td>
<td>(I^3, P_5, C(4, 7))</td>
<td>???</td>
</tr>
<tr>
<td># of good seeds</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>> 1000?</td>
</tr>
</tbody>
</table>

The classification of toric manifolds of Picard number 4 deals with the case \(m - n = 4 \). In spite of finiteness, we expect over thousands of good seeds. This is a serious ongoing project which heavily involves:

1. Enumeration of simplicial spheres: one should search for \((n - 1)\)-spheres with \((n + 4)\) vertices when \(n = 2, 3, \ldots, 11 \). This is almost hopeless without the good seed property.
2. Theory of oriented matroids: to determine polytopality of spheres. Also highly nontrivial.
3. Classification-by-Wedge: for further future. Worth to try first for specific interesting examples like \(\text{vc}(I^3) \).
Thank you for attention!
Have a nice time in Jeju.

감사합니다 谢谢
ありがとうございます

References
- Small covers over wedges of polygons, in preparation.