The theory of $(2n, k)$-manifolds

Svjetlana Terzić

University of Montenegro
e-mail: sterzic@ac.me

joint work with Victor M. Buchstaber, Steklov Mathematical Institute, Russian Academy of Sciences

"Topology of Torus Actions and its Applications to Geometry and Combinatorics",
Daejeon, Korea, 7 - 11 August, 2014
Content of the talk

- Motivating results
- Theory of toric \((2n, k)\) - manifolds
- Complex Grassmann and flag manifolds as \((2n, k)\) - manifolds
- Seminal examples of \((2n, k)\)-manifolds
The main ideas of our approach are published in:

Victor M. Buchstaber (joint with Svjetlana Terzić)
\((2n, k)\)-manifolds and applications, Mathematisches Forschung Institut Oberwolfach, Report No. 27/2014, p. 5–8, DOI: 10.4171/OWR/2014/27
We consider the complex Grassmann manifold \(G_{4,2} = U(4)/U(2) \times U(2) \) and the canonical action \(T^4 \hookrightarrow G_{4,2} \) which induces effective action of \(T^3 \).

Theorem

\(X = G_{4,2}/T^3 \) is homeomorphic to the quotient space

\[
(\Delta_{4,2} \times \mathbb{CP}^1)/ \approx
\]

where \((x, c) \approx (y, c') \iff x = y \in \partial \Delta_{4,2} \).
We consider the complex Grassmann manifold $G_{4,2} = U(4)/U(2) \times U(2)$ and the canonical action $T^4 \hookrightarrow G_{4,2}$ which induces effective action of T^3.

Theorem

$X = G_{4,2}/T^3$ is homeomorphic to the quotient space

$$(\Delta_{4,2} \times \mathbb{C}P^1)/\sim$$

where $(x, c) \sim (y, c') \iff x = y \in \partial \Delta_{4,2}$.

Corollary

$G_{4,2}/T^3$ is homeomorphic to the join $S^2 \ast S^2$ which is homotopy equivalent to S^5.

Theorem

$G_{4,2}/T^3$ is a topological manifold without boundary, and, thus, $G_{4,2}/T^3$ is homeomorphic to the sphere S^5.
• S^5 has unique differentiable structure, the standard one;

• suggests: no differentiable structure on $X = G_{4,2}/T^3$ such that
 $\pi : G_{4,2} \to X$ is a smooth map;
 otherwise X would be diffeomorphic to the standard sphere S^5,
 $S^1 \hookrightarrow S^5$ smoothly, while it is not clear where such an action on X
 would come from.

— We prove the quotient structure is not differentiable;

— Describe the corresponding smooth and singular points;
Consider representation $T^4 \rightarrow T^6$ given by

$$(t_1, t_2, t_3, t_4) \rightarrow (t_1 t_2, t_1 t_3, t_1 t_4, t_2 t_3, t_2 t_4, t_3 t_4)$$

and the action $T^4 \hookrightarrow \mathbb{C}P^5$ given as the composition of this representation and the standard action of T^6 on $\mathbb{C}P^5$. We obtain an effective action $T^3 \hookrightarrow \mathbb{C}P^5$

We prove:

Theorem

$\mathbb{C}P^5 / T^3$ is homeomorphic to $\partial \Delta_{4,2} \ast \mathbb{C}P^2 \equiv S^2 \ast \mathbb{C}P^2$.
The Plücker embedding of $G_{4,2}$ into $\mathbb{C}P^5$ is equivariant under the canonical action of T^4 on $G_{4,2}$ and the action of T^4 on $\mathbb{C}P^5$ given by representation $T^4 \to T^6$ by the second symmetric power. It implies:

$$G_{4,2}/T^3 \subset \mathbb{C}P^5/T^3 : S^2 \ast \mathbb{C}P^1 \subset S^2 \ast \mathbb{C}P^2,$$

where $\mathbb{C}P^1 \subset \mathbb{C}P^2$

$$(c, 1) \to (c : 1 : (1 - c)), \ (1, 0) \to (0, 0, 1).$$
There is the standard moment map $\mu : G_{4,2} \to \mathbb{R}^4$ defined by:

$$
\mu(X) = \frac{\sum_J |P^J(X)|^2 \delta_J}{\sum_J |P^J(X)|^2},
$$

where $J \subset \{1, 2, 3, 4\}$, $|J| = 2$ and $P^J(X)$ are the Plücker coordinates for $X \in G_{4,2}$ and $\delta_J \in \mathbb{R}^4$ is given by

$$(\delta_J)_i = 1, \ i \in J, \ (\delta_J)_i = 0, \ i \notin J.$$

This map is invariant for the canonical action of T^4 on $G_{4,2}$ and trivial action on \mathbb{R}^4.

$\text{Im} \mu = \Delta_{4,2} — \text{octahedron.}$
There exists a smooth atlas \((M_J, \varphi_J)\) for \(G_{4,2}\):

\[
M_J = \{X \in G_{4,2} \mid P^J(X) \neq 0\}, \quad \varphi_J : M_J \to \mathbb{C}^4.
\]

\(X \in M_J \Rightarrow\) it can be represented by matrix \(A\) such that \(A_J = I_d\) and

\[
\varphi_J(X) = (a_{ij}(X)) \in \mathbb{C}^4, \quad i \notin J
\]

Each chart \(M_J\) is \(T^3\)-invariant, everywhere dense set in \(G_{4,2}\) and contains exactly one fixed point which maps to zero by the coordinate map.

For any chart \((M_J, \varphi_J)\) it is given the characteristic homomorphism \(\alpha_J : T^3 \to T^4\) such that the homeomorphism \(\varphi_J\) is \(\alpha_J\) - equivariant:

\[
\varphi_J(tm) = \alpha_J(t)\varphi_J(m), \quad t \in T^3, \quad m_J \in M_J.
\]

For any characteristic homomorphism \(\alpha_J : T^3 \to T^4\), the weight vectors are pairwise linearly independent.

The map \(\mu\) gives the bijection between the set of fixed points and the set of vertices of the polytope \(\Delta_{4,2}\).
We assume the following to be given:

- a smooth, closed simply connected manifold M^{2n};

- a smooth, effective action θ of the torus T^k on M^{2n}, where $2 \leq k \leq n$, such that the stabilizer of any point is connected;

- an open θ-equivariant map $\mu : M^{2n} \rightarrow \mathbb{R}^k$ whose image is a k-dimensional convex polytope, where \mathbb{R}^k is considered with trivial T^k - action.

- μ - we call an *almost moment map*.

- $\text{Im}\mu$ we denote by P^k.

- It is defined the characteristic function

$$\chi : M^{2n} \rightarrow S(T^k) \text{ by } \chi(x) = \text{stab}(x)$$

- The function χ induces mapping from $M^{2n}/T^k \rightarrow S(T^k)$.
Axiom 1:

There is a smooth atlas $\mathcal{M} = \{(M_i, \varphi_i)\}_{i \in I}$ with the homeomorphisms $\varphi_i : M_i \to \mathbb{R}^{2n} \approx \mathbb{C}^n$ for the fixed identification \approx, such that any chart M_i

- is T^k-invariant,
- contains exactly one fixed point x_i with $\varphi_i(x_i) = (0, \ldots, 0)$,
- the closure of M_i is M^{2n}.

Corollary.
The action of T^k on M^{2n} has finitely many isolated fixed points.
Axiom 1:
There is a smooth atlas \(\mathcal{M} = \{(M_i, \varphi_i)\}_{i \in I} \) with the homeomorphisms \(\varphi_i : M_i \to \mathbb{R}^{2n} \cong \mathbb{C}^n \) for the fixed identification \(\cong \), such that any chart \(M_i \)
- is \(T^k \)-invariant,
- contains exactly one fixed point \(x_i \) with \(\varphi_i(x_i) = (0, \ldots, 0) \),
- the closure of \(M_i \) is \(M^{2n} \).

Corollary. The action of \(T^k \) on \(M^{2n} \) has finitely many isolated fixed points.
Denote by m the number of fixed points for T^k-action on M^{2n}. The charts given by Axiom 1 we enumerate as $(M_1, \varphi_1), \ldots, (M_m, \varphi_m)$. The sets $Y_i = \partial M_i = M - M_i$ are closed and T^k-invariant. Define the sets W_σ, where $\sigma = \{i_1, \ldots, i_l\} \subseteq \{1, \ldots, m\}$ as:

$$W_\sigma = M_{i_1} \cap \cdots M_{i_l} \cap Y_{i_{l+1}} \cap \cdots Y_{i_m},$$

where $\{i_{l+1}, \ldots, i_m\} = \{1, \ldots, m\} - \{i_1, \ldots, i_l\}$.

Definition

The non-empty set W_σ is called admissible and the corresponding set σ is called admissible too.

Lemma

The admissible sets W_σ are T^k-invariant, pairwise disjoint and $M^{2n} = \bigcup W_\sigma$.
$W_{\{1,\ldots,m\}}$ is an admissible set which is everywhere dense in M^{2n}.

$W_{\{i\}}$ is an admissible set for any $1 \leq i \leq m$.
Axiom 2:
The map μ gives the bijection between the set of fixed points and the set of vertices of the polytope P^k.

Let $S(P_k)$ be the family of convex polytopes which are spanned by the vertices of the polytope P_k and $\{W_\sigma\}$ the family of all admissible sets.

Define the map $s: \{W_\sigma\} \rightarrow S(P_k)$ by $s(W_\sigma) = P_\sigma$, where $\sigma = \{i_1, \ldots, i_l\}$ and $P_\sigma = \text{convhull}(v_{i_1}, \ldots, v_{i_l})$, and v_{i_1}, \ldots, v_{i_l} are the vertices of the polytope P_k determined by $v_{ij} = \mu(x_{ij})$ for $x_{ij} \in M_{ij} - \text{the fixed point}$.

Definition
A polytope $P_\sigma \in S(P_k)$ is said to be admissible if it corresponds to an admissible set.

The polytope P_k is an admissible polytope, where $\sigma = \{1, \ldots, m\}$.

Svjetlana Terzić
The theory of $(2n, k)$-manifolds
Axiom 2:

The map μ gives the bijection between the set of fixed points and the set of vertices of the polytope P^k.

Let $S(P^k)$ be the family of convex polytopes which are spanned by the vertices of the polytope P^k and $\{W_\sigma\}$ the family of all admissible sets. Define the map $s : \{W_\sigma\} \rightarrow S(P^k)$ by

$$s(W_\sigma) = P_\sigma, \text{ where } \sigma = \{i_1, \ldots, i_l\} \text{ and } P_\sigma = \text{convhull}(v_{i_1}, \ldots, v_{i_l}),$$

and v_{i_1}, \ldots, v_{i_l} are the vertices of the polytope P^k determined by

$$v_{i_j} = \mu(x_{i_j}) \text{ for } x_{i_j} \in M_{i_j} \text{ – the fixed point.}$$

Definition

A polytope $P_\sigma \in S(P^k)$ is said to be admissible if it corresponds to an admissible set.

The polytope P^k is an admissible polytope, where $\sigma = \{1, \ldots, m\}$.
For a general $(2n, k)$-manifold two admissible polytopes may intersect.

See for example complex flag manifold F_3 as $(6, 2)$-manifold and complex Grassmann manifold $G_{4,2}$ as $(8, 3)$-manifold.

Definition

A point $p \in P^k$ is said to be singular if $p \in P_{\sigma_1} \cap P_{\sigma_2}$ for some $P_{\sigma_1}, P_{\sigma_2} \in \mathcal{S}$, thus we obtain the set of singular points.
Denote by $\hat{\mu} : M^{2n} / T^k \to P^k$ the map induced by the almost moment map μ.

Axiom 3:

The almost moment map μ:

- gives the mapping from W_σ to P_σ,
- induces fiber bundle $\hat{\mu} : W_\sigma / T^k \to P_\sigma$.

Svetlana Terzić

The theory of $(2n,k)$-manifolds
Choose $x_\sigma \in \mathring{P}_\sigma$ and let $F_\sigma = \mu^{-1}(x_\sigma)$.

Definition

The set F_σ we call the set of parameters of the admissible set W_σ. It is the fiber of the bundle $\mu^\circ : W_\sigma / T^k \rightarrow \mathring{P}_\sigma$.

Since \mathring{P}_σ is contractible we obtain:

Corollary. The fiber bundle $\mu^\circ : W_\sigma / T^k \rightarrow \mathring{P}_\sigma$ is isomorphic to the trivial bundle. Hence W_σ / T^k is homeomorphic to $\mathring{P}_\sigma \times F_\sigma$.
The boundary $\partial W_\sigma = \overline{W_\sigma} - W_\sigma$ of an admissible set W_σ is contained in the union of the admissible sets $W_{\tilde{\sigma}}$ for all subsets $\tilde{\sigma} \subset \sigma$.

In the paper of Gel’fand-Serganova (UMN, 1987) it is given the description of the action of T^6 on the Grassmann manifold $G_{7,3}$ from which we deduce the example of our $(2n, k)$-manifold for which

$$\partial W_\sigma \subset \bigcup_{\tilde{\sigma} \subset \sigma} W_{\tilde{\sigma}}.$$
More precisely, consider in $G_{7,3}$ the point given by a matrix

$$
\begin{pmatrix}
1 & 0 & 0 & 0 & b_1 & c_1 & d_1 \\
0 & 1 & 0 & a_2 & 0 & c_2 & d_2 \\
0 & 0 & 1 & a_3 & b_3 & 0 & d_3
\end{pmatrix}
$$

Its $(\mathbb{C}^*)^6$-orbit coincides with a admissible set W_σ which contains it. Thus the set F_σ of parameters of W_σ is a point.

The point given by a matrix

$$
\begin{pmatrix}
1 & 0 & 0 & 0 & b_1 & c_1 & 0 \\
0 & 1 & 0 & a_2 & 0 & c_2 & 0 \\
0 & 0 & 1 & a_3 & b_3 & 0 & 0
\end{pmatrix}
$$

belongs to ∂W_σ. This point belongs to the admissible set $W_{\sigma'}$ and the set of parameters $F_{\sigma'}$ of $W_{\sigma'}$ is two-dimensional.
For a given trivialization $\xi_\sigma : W_\sigma / T^k \to F_\sigma$ and any point $c_\sigma \in F_\sigma$ the leaf $W_\sigma[\xi_\sigma, c_\sigma] \subseteq W_\sigma$ is defined as

$$W_\sigma[\xi_\sigma, c_\sigma] = (\pi^{-1} \circ \xi^{-1}_\sigma)(c_\sigma),$$

where $\pi : W_\sigma \to W_\sigma / T^k$ is the projection.

Axiom 4:

For any admissible σ there exists the trivialization $\xi_\sigma : W_\sigma / T^k \to F_\sigma$ such that for any $c_\sigma \in F_\sigma$ the boundary $\partial W_\sigma[\xi_\sigma, c_\sigma]$ of the leaf $W_\sigma[\xi_\sigma, c_\sigma]$ of W_σ is the union of the leaves $W_{\bar{\sigma}}[\xi_{\bar{\sigma}}, c_{\bar{\sigma}}]$ for exactly one $c_{\bar{\sigma}} \in F_{\bar{\sigma}}$, where $P_{\bar{\sigma}}$ runs through the admissible faces for P_σ.

Note. Axiom 4 is motivated by the results of Atiyah, Guillemin-Sternberg and Gel’fand-MacPherson in the case of $(\mathbb{C}^*)^k$-action on M^{2n}.

Svjetlana Terzić

The theory of $(2n, k)$-manifolds
Let Axiom 4 is satisfied. Since \(\mu(W_\sigma[\xi_\sigma, c_\sigma]) = P_\sigma \) we obtain:

Lemma

For any \(c_\sigma \in F_\sigma \), the boundary \(\partial W_\sigma[\xi_\sigma, c_\sigma] \) of the leaf \(W_\sigma[\xi_\sigma, c_\sigma] \) of the stratum \(W_\sigma \) is the union of the leaves \(W_{\bar{\sigma}}[\xi_{\bar{\sigma}}, c_{\bar{\sigma}}] \) for exactly one \(c_{\bar{\sigma}} \in F_{\bar{\sigma}} \), where \(P_{\bar{\sigma}} \) runs through the all faces for \(P_\sigma \).

Corollary. Any face of an admissible polytope is an admissible polytope.

Corollary. For any pair \(P_{\sigma'} \subset P_\sigma \) there exists the map \(\xi_{\sigma,\sigma'} : F_\sigma \to F_{\sigma'} \) such that if \(P_{\sigma''} \subset P_{\sigma'} \subset P_\sigma \) then \(\xi_{\sigma'',\sigma'} \circ \xi_{\sigma,\sigma'} = \xi_{\sigma,\sigma''} \).
Let \mathcal{S} denotes the set of admissible polytopes. Define the operator d on \mathcal{S} by

$$dP_\sigma \text{ is disjoint union of all proper faces of } P_\sigma.$$

We obtain CW complex $CW(M^{2n}, P^k)$: the vertices of this complex are the vertices of P^k and open cells are \mathring{P}_σ for $P_\sigma \in \mathcal{S}$. We glue them by induction using the operator d.

There is the canonical map $\widehat{\pi}: CW(M^{2n}, P^k) \to P^k$.

For any $P_\sigma \in \mathcal{S}$ there is the cell \mathring{P}_σ' in $CW(M^{2n}, P^k)$ such that the map $\widehat{\pi}: \mathring{P}_\sigma' \to \mathring{P}_\sigma$ is a homeomorphism.
We obtain the canonical map \(g : M^{2n} \to CW(M^{2n}, P^k) \) defined by

\[
x \in M^{2n} \Rightarrow \exists! W_\sigma, \ x \in W_\sigma \Rightarrow \mu(x) \in P_\sigma,
\]

\[
\exists! y \in P'_\sigma \subseteq CW(M^{2n}, P^k), \ \hat{\pi}(y) = \mu(x).
\]

Theorem

The singular points of \(P^k \) can be resolved that is almost moment map \(\mu : M^{2n} \to P^k \) decomposes as \(\mu = \hat{\pi} \circ g \) for the canonical map \(g : M^{2n} \to CW(M^{2n}, P^k) \).

Note. As it is shown we have \(\partial W_\sigma \subset \bigcup_{\tilde{\sigma} \subset \sigma} W_{\tilde{\sigma}} \) for \(G_{7,3} \). Consequently in general case the family \(\{ W_\sigma \} \) does not give \(CW \)-complex. Although there are important examples of \((2n, k)\)-manifolds for which \(CW(M^{2n}, P^k) \) is covered by the \(CW \)-complex of admissible sets.
The orbit space M^{2n}/T^k can be described in terms of $CW(M^{2n}, P^k)$, F_σ and $\xi_{\sigma,\sigma'}$:

Theorem

$$M^{2n}/T^k = \bigcup P_\sigma \times F_\sigma / \approx,$$

where $(x, f_x) \approx (y, f_y)$ if and only if

1. $x = y \in P_{\sigma'} \subset P_\sigma$,
2. $f_y = \xi_{\sigma,\sigma'}(f_x)$.
Axiom 5:

- χ is constant on W_σ for any admissible set W_σ.
- If $W_\sigma' \subset W_\sigma$, then $\chi(W_\sigma) \subset \chi(W_\sigma')$.

We call W_σ a stratum if Axiom 5 is satisfied.

Define the function

$$\widehat{\chi}: \mathcal{S} \to S(T^k) \text{ by } \widehat{\chi}(P_\sigma) = \chi(x), \ x \in W_\sigma.$$

Then $T_\sigma = T^k/\chi(P_\sigma)$ acts freely on W_σ.

By construction we have:

If $P_\bar{\sigma}$ is a facet of P_σ then $\widehat{\chi}(P_\sigma) \subseteq \widehat{\chi}(P_\bar{\sigma})$.
Moreover it holds:

Proposition

If $P_\sigma \in \mathcal{S}$ and $P_{\bar{\sigma}}$ is a facet of P_σ then $\widehat{\chi}(P_\sigma) \subset \widehat{\chi}(P_{\bar{\sigma}})$.

Theorem

$\text{Codim } \chi(W_\sigma) = \dim T_\sigma = \dim P_\sigma$ for any stratum W_σ.

Corollary. $\dim W_\sigma[\xi_\sigma, c_\sigma] = 2\dim P_\sigma$ for any admissible polytope P_σ and any $c_\sigma \in F_\sigma$

Corollary. $\dim F_\sigma$ is even.
Almost standard action

Consider an action θ of the torus \mathbb{T}^k on \mathbb{C}^n given by a representation $\rho : \mathbb{T}^k \to \mathbb{T}^n$ and the standard action of \mathbb{T}^n on \mathbb{C}^n.

Definition

An action θ is called almost standard if:

1. it is effective,
2. the origin is the only fixed point,
3. the stabilizer of any point $x \in \mathbb{C}^n$ is connected.
4. its weight vectors are pairwise linearly independent.

Remark. For $k = n$ an almost standard action is isomorphic to the standard one.

- The representation ρ can be written as $\rho = (\rho_1, \ldots, \rho_n)$, where $\rho_i : \mathbb{T}^k \to S^1$, $1 \leq i \leq n$.
- The characters ρ_i can be represented as $\rho_i(t) = e^{2\pi \sqrt{-1} \langle \Lambda_i, t \rangle}$, where $\Lambda_i \in \mathbb{Z}^k$ are the weight vectors for the representation ρ.
We obtain the matrix V be a $(k \times n)$-matrix whose rows are given by the weight vectors Λ_i.

Denote by $P^J(V)$ the Plücker coordinates of the matrix V, where $J \subseteq \{1, \ldots, n\}$ and $|J| = k$.

The matrix V gives the linear map $\mathbb{R}^k \to \mathbb{R}^n$.

Furthermore, for any subset $J \subseteq \{1, \ldots, n\}$, the matrix V^J defined by the vectors $\Lambda_j, j \in J$ gives the linear map $f_J : \mathbb{R}^k \to \mathbb{R}^J$.

Proposition

If the map $f_J : \mathbb{R}^k \to \mathbb{R}^J$ is induced by an almost standard action of \mathbb{T}^k on \mathbb{C}^n then the image $f_J(\mathbb{Z}^k)$ is a direct summand in \mathbb{Z}^J for any $J \subseteq \{1, \ldots, n\}$.

Corollary. The Plücker coordinates $P^J(V) \in \{-1, 0, 1\}$.

Corollary. The weight vectors $\Lambda_i, 1 \leq i \leq n$ are primitive.
Axiom 6:

For any chart \((M_i, \varphi_i)\) it is given the characteristic homomorphism \(\alpha_i : \mathbb{T}^k \to \mathbb{T}^n\) such that:

1. its weight vectors are pairwise linearly independent.
2. the homeomorphism \(\varphi_i\) is \(\alpha_i\) - equivariant:

\[
\varphi_i(tx_i) = \alpha_i(t)\varphi_i(x_i), \quad t \in \mathbb{T}^k, \ x_i \in M_i.
\]

Lemma.

Any characteristic homomorphism \(\alpha_i : \mathbb{T}^k \to \mathbb{T}^n\) gives an almost standard action of \(\mathbb{T}^k\) on \(\mathbb{C}^n\).

Corollary.

The number of fixed points \(m \geq k + 1\).
Consider an action of the algebraic torus \((\mathbb{C}^*)^k \) on \(\mathbb{C}^n \). It induces the action of the compact torus \(T^k \) on \(\mathbb{C}^n \) given by a representation \(\rho : T^k \rightarrow T^n \) and the standard action of \(T^n \) on \(\mathbb{C}^n \).

Definition

An action of \((\mathbb{C}^*)^k \) on \(\mathbb{C}^n \) we call almost standard action if the induced action of \(T^k \) on \(\mathbb{C}^n \) is almost standard.

Lemma

For an almost standard action of \((\mathbb{C}^*)^k \) on \(\mathbb{C}^n \) it holds

1. any one-dimensional \((\mathbb{C}^*)^k \)-orbit is one of the coordinate axis,
2. for any codimension one subgroup \(H < T^k \) the fixed point set \((\mathbb{C}^n)^H \) is either the origin either it is one of the coordinate axis.

For an almost standard action of \((\mathbb{C}^*)^k \) on \(\mathbb{C}^n \) we have the map from the set of coordinate axis to the set of codimension one subgroups of \(T^k \).
Let H be a codimension one subgroup of T^k. Then

$$(M^{2n})^H = \bigcup_{1 \leq i \leq m} M^H_i, \quad S^1 = T^k / H \text{ acts smoothly on } (M^{2n})^H.$$

Denote by X^H a connected component of $(M^{2n})^H$. Then X^H is a closed submanifold in M^{2n} and S^1 acts smoothly on X^H.

The set of one-dimensional orbits
Proposition

- X^H is either a fixed point or it is homeomorphic to the sphere S^2 equipped with S^1-action with the fixed point $\{x_i, x_j\}$.
- For $X^H \cong S^2$ it holds $X^H - \{x_i, x_j\} \subseteq W_{\{i,j\}}$ and X^H is given by the closure of the preimage of the coordinate axis in the chart M_i as well as the corresponding axis in the chart M_j.

Corollary

The closure of the set of points in M^{2n} which have one-dimensional orbits is given by the union of $\frac{n \cdot m}{2}$ spheres S^2.

Corollary

$\mu(X^H) = [v_i, v_j]$

Note: If n is odd then the number of fixed points m must be even.
Height function of a \((2n, k)\)-manifold

Definition

A linear map \(h : \mathbb{R}^k \to \mathbb{R}, h(x) = \langle x, \nu \rangle \) is said to be the height function for \(T^k \) manifold \(M^{2n} \) if:

1. \(h(v_i) \neq h(v_j) \) for any two vertices \(v_i \) and \(v_j \) of \(P^k \),
2. the composition \(h \circ \mu : M^{2n} \to \mathbb{R} \) is a Morse function whose critical points coincides with the fixed points for \(T^k \)-action on \(M^{2n} \).

Remark The condition for \(h \circ \mu \) to be a Morse function does not depend on the vector \(\nu \) in general position.

Axiom 7

For a \((2n, k)\)-manifold there is a height function \(h : \mathbb{R}^k \to \mathbb{R} \).
Graph of a \((2n, k)\)-manifold

Definition

Graph \(\Gamma(M^{2n}, P^k)\) of \((2n, k)\)-manifold \(M^{2n}\) is a graph given by the vertices and 1-dimensional admissible polytopes of \(P^k\).

It is 1-skeleton of the complex \(CW(M^{2n}, P^k)\).

At any vertex of the graph \(\Gamma(M^{2n}, P^k)\) there are exactly \(n\) edges.

The height function produces the orientation of the graph \(\Gamma(M^{2n}, P^k)\).
The index \(\text{ind}(v) \) of the vertex \(v \) of the graph \(\Gamma(M^{2n}, P^k) \) is the number of edges of \(\Gamma(M^{2n}, P^k) \) incoming into vertex \(v \).

We denote by \(h_q \) the number of vertices of \(\Gamma(M^{2n}, P^k) \) having index \(q \).

Theorem

The number \(h_q \) is equal to \(2q \)-th Betti number for \(M^{2n} \):

\[
h_q = b_{2q}(M^{2n}), \quad q = 0, \ldots, n.
\]

The classical Poincare duality theorem gives:

Corollary

\[
h_q = h_{n-q}, \quad q = 0, \ldots, n.
\]
Let us consider a graph Γ with the set of vertices V and the set of edges E.

Definition

A graph Γ is called \mathbb{Z}^k-labeled if it is fixed a mapping $l : E \to \mathbb{Z}^k$.

Definition

A mapping $s : V \to \mathbb{Z}[t]$, where $t = (t_1, \ldots, t_k)$ is said to be suitable if $s(v_1) - s(v_2)$ is divisible by the linear form $\langle l(r), t \rangle$ for any edge r which connects the vertices v_1 and v_2.

Definition

$\text{GKM}(\Gamma, l)$ -ring of the labeled graph (Γ, l) is the ring of all suitable maps $s : V \to \mathbb{Z}[t]$, with the pointwise multiplication.
Let E denote the set of edges of the graph $\Gamma(M^{2n}, P^k)$. We have the function $\hat{\chi} : E \to S(T^k)$ and

$$\dim \hat{\chi}(e) = k - 1, \ e \in E.$$

Let $S^1_e = T^k/\hat{\chi}(e), \ e \in E$.

The projection $\rho_e : T^k \to S^1_e$ is given by the vector $l_e \in \mathbb{Z}^k$.

The labeled graph of T^k-manifold M^{2n} is the graph $\Gamma(M^{2n}, P^k)$ together with the labeling of its edges given by $e \to l_e$.

This construction is motivated by the construction of GKM graph.
Let $B(2n, k) = BT^k \times_{T^k} M^{2n}$ be the Borel construction of a $(2n, k)$-manifold. The equivariant cohomology for M^{2n} are defined by

$$H^*_T(M^{2n}, \mathbb{Z}) = H^*(B(2n, k), \mathbb{Z}).$$

Theorem

The GKM -ring of the oriented labeled graph $\Gamma(M^{2n}, P^k)$ of a $(2n, k)$-manifold M^{2n} is isomorphic to $H^*_T(M^{2n}, \mathbb{Z})$.
Let $G_{p,q}$ be a complex Grassmann manifold of q-dimensional subspaces in \mathbb{C}^p with canonical action of the compact torus T^p. There is the almost moment map $\mu : G_{p,q} \to \Delta_{p,q}$, where $\Delta_{p,q}$ is the hypersimplex of the dimension $p - 1$.

Let F_p be a complex flag manifold of complete flags in \mathbb{C}^p with canonical action of T^p. The manifold F_p has the almost moment map $\mu : F_p \to P^{p-1}_e$, where P^{p-1}_e is the permutahedron.

Theorem

Any $G_{p,q}$ and F_p are $(2n, k)$-manifolds, where $k = p - 1$.

Svjetlana Terzić

The theory of $(2n, k)$-manifolds
Manifold $G_{4,2}$

$$\mu(G_{4,2}) = \Delta_{4,2} - \text{octahedron}$$

$\Delta_{4,2} \subset \mathbb{R}^4$ has 6 vertices and they have two coordinates equal to 1 and two equal to 0.

We list the vertices by the indices of the coordinates equal to 1, that is 12, 13, 14, 23, 24, 34.

The admissible polytopes are:

1. $\Delta_{4,2}$;
2. 6 four-sided pyramid;
3. 3 diagonal squares;
4. any face on the boundary for $\Delta_{4,2}$.

Svetlana Terzić

The theory of $(2n, k)$-manifolds
\(W_{\Delta,4,2}\) is eight-dimensional stratum with the free action of \(T^3\).

\[
W_{\Delta,4,2}/T^3 \cong \Delta_{4,2} \times F_{\Delta,4,2}
\]

where \(F_{\Delta,4,2} = (\mathbb{C} - \{0, 1\})\).

For the 6-dimensional strata with admissible polytope \(P_\sigma\) all \(F_\sigma\) are the points. We describe \(F_\sigma\) in terms of \(F_{\Delta,4,2}\).

- \(F_\sigma = \{0\}\) for \(\sigma = \{12, 13, 23, 24, 34\}\) or \(\sigma = \{12, 13, 14, 24, 34\}\);
- \(F_\sigma = \{\infty\}\) for \(\sigma = \{12, 14, 23, 24, 34\}\) or \(\sigma = \{12, 13, 14, 23, 34\}\);
- \(F_\sigma = \{1\}\) for \(\sigma = \{13, 14, 23, 24, 34\}\) or \(\sigma = \{12, 13, 14, 23, 24\}\).

The height function \(h : \mathbb{R}^4 \rightarrow \mathbb{R}\) is given by
\[
h(x_1, x_2, x_3, x_4) = x_1 + 2x_2 + 4x_3 + 8x_4.
\]
Embedding of $G_{4,2}$ into $\mathbb{C}P^5$ given by the Plucker coordinates is T^4-invariant and it is embedding of $(8, 3)$-manifold into $(10, 3)$-manifold. Almost moment map $G_{4,2} \to \Delta_{4,2}$ decomposes into the composition of this embedding and the almost moment map $\mathbb{C}P^5 \to \Delta_{4,2}$.

Any polytope spanned by some subset of vertices for $\Delta_{4,2}$ is admissible polytope for $(10, 3)$-manifold $\mathbb{C}P^5$.
Manifold F_3

F_3 - flag manifold in three-dimensional complex space
It is 6-dimensional manifold with effective action of the compact torus T^2.
There is the almost moment map $\mu : F_3 \rightarrow \mathbb{R}^2$.
$\text{Im}\mu = P^2$ is a 6-gon - let us enumerate its vertices as 1, \ldots, 6 anticlockwise.
We obtain $(6, 2)$-manifold and $CW(F_3, P^2)$ has

- 6 vertices: \{1, \ldots, 6\}
- 9 edges: [1, 2], [2, 3], \ldots, [5, 6], [1, 4], [2, 5], [3, 6]
- 4 two dimensional cells: [1, \ldots, 6], [1, 2, 3, 4], [3, 4, 5, 6] and [1, 2, 5, 6].

The vertices of the corresponding graph have the indices: 0, 1, 1, 2, 2, 3.
It follows that the h-numbers are: 1, 2, 2, 1, which are the Betti numbers of F_3.