Betti numbers of toric origami manifolds

Seonjeong Park
Jointly with A. Ayzenberg, M. Masuda, H. Zeng

1National Institute for Mathematical Sciences
2Osaka City University

(2014 ICM Satellite Conference)
Topology of torus actions and applications
to geometry and combinatorics,
August 7–11, 2014
Daejeon Convention Center
Table of contents

1 Toric origami manifolds

2 Betti numbers of toric origami manifolds
Table of contents

1 Toric origami manifolds

2 Betti numbers of toric origami manifolds
Symplectic manifolds

A **symplectic manifold** \((M, \omega)\) is a manifold equipped with a **symplectic form** \(\omega \in \Omega^2(M)\) that is closed \((d\omega = 0)\) and non-degenerate.

Example

The unit sphere \(S^2\) in \(\mathbb{R}^3\) is a symplectic manifold with \(\omega = d\theta \wedge dh\).

But for \(n > 1\), \(S^{2n}\) cannot admit a symplectic form.
A *symplectic toric manifold* is a compact connected symplectic manifold \((M^{2n}, \omega)\) equipped with an effective hamiltonian action of an \(n\)-torus \(T^n\) and with a corresponding moment map \(\mu: M \rightarrow \mathbb{R}^n\).

Delzant’s Theorem

\[
\begin{align*}
\{\text{compact toric symplectic manifolds}\} & \overset{1:1}{\longleftrightarrow} \{\text{Delzant polytopes}\}, \\
(M, \omega, T^n, \mu) & \overset{1:1}{\longleftrightarrow} \mu(M)
\end{align*}
\]

Example

\[h \rightarrow +1 \quad -1\]
Origami

Seonjeong Park (NIMS) Betti numbers of toric origami manifolds 5 / 24
Origami manifolds

An *origami form* on a $2n$-dim’l manifold M is a closed 2-form ω

- ω^n vanishes transversally on a submanifold $i: Z \hookrightarrow M$;
- $i^*\omega$ has maximal rank, i.e., $(i^*\omega)^{n-1}$ does not vanish;
- the 1-dimensional kernel on Z is the vertical bundle of an oriented S^1 fiber bundle $Z \xrightarrow{\pi} B$ over a compact base B.

(M, ω) is called an *origami manifold* with a fold Z.
Origami manifolds

An origami form on a $2n$-dim’l manifold M is a closed 2-form ω

- ω^n vanishes transversally on a submanifold $i: Z \hookrightarrow M$;
- $i^*\omega$ has maximal rank, i.e., $(i^*\omega)^{n-1}$ does not vanish;
- the 1-dimensional kernel on Z is the vertical bundle of an oriented S^1 fiber bundle $Z \xrightarrow{\pi} B$ over a compact base B.

(M, ω) is called an origami manifold with a fold Z.

Example

For $n \geq 1$, $(S^{2n} \subset \mathbb{C}^n \oplus \mathbb{R}, \omega_{\mathbb{C}^n} \oplus 0)$ is an origami manifold with the fold $Z = S^{2n-1} \subset \mathbb{C}^n \oplus \{0\}$, where $\omega_{\mathbb{C}^n} = \frac{i}{2} \sum_{k=1}^{n} dz_k \wedge d\bar{z}_k$ and the 1-dimensional kernel on Z is the vertical bundle of the Hopf bundle $\pi: S^{2n-1} \rightarrow \mathbb{C}P^{n-1}$.
Origami manifolds

An **origami form** on a $2n$-dim’l manifold M is a closed 2-form ω

- ω^n vanishes transversally on a submanifold $i: Z \hookrightarrow M$;
- $i^*\omega$ has maximal rank, i.e., $(i^*\omega)^{n-1}$ does not vanish;
- the 1-dimensional kernel on Z is the vertical bundle of an oriented S^1 fiber bundle $Z \xrightarrow{\pi} B$ over a compact base B.

(M, ω) is called an **origami manifold** with a **fold** Z.

Example

For $n \geq 1$, $(S^{2n} \subset \mathbb{C}^n \oplus \mathbb{R}, \omega_{\mathbb{C}^n} \oplus 0)$ is an origami manifold with the fold $Z = S^{2n-1} \subset \mathbb{C}^n \oplus \{0\}$, where $\omega_{\mathbb{C}^n} = \frac{i}{2} \sum_{k=1}^{n} dz_k \wedge d\bar{z}_k$ and the 1-dimensional kernel on Z is the vertical bundle of the Hopf bundle $\pi: S^{2n-1} \to \mathbb{C}P^{n-1}$.
Toric origami manifolds

The action of a Lie group G on an origami manifold (M, ω) is Hamiltonian if it admits a moment map $\mu : M \to g^*$ satisfying the conditions:

- μ collects hamiltonian functions, i.e., $d\langle \mu, X \rangle = \iota_X \# \omega$, $\forall X \in g := \text{Lie}(G)$, where $X \#$ is the vector field generated by X;
- μ is equivariant with respect to the given action of G on M and the coadjoint action of G on the dual vector space g^*.

A toric origami manifold is a compact connected origami manifold (M, ω) equipped with an effective Hamiltonian action of a torus T with $\dim T = \frac{1}{2} \dim M$.

NOTE: If $Z = \emptyset$, a toric origami manifold is a toric symplectic manifold.
Toric origami manifolds

The action of a Lie group G on an origami manifold (M, ω) is **Hamiltonian** if it admits a **moment map** $\mu : M \to g^*$ satisfying the conditions:

- μ collects hamiltonian functions, i.e., $d\langle \mu, X \rangle = \iota_X # \omega$, $\forall X \in g := \text{Lie}(G)$, where $X#$ is the vector field generated by X;
- μ is equivariant with respect to the given action of G on M and the coadjoint action of G on the dual vector space g^*.

A **toric origami manifold** is a compact connected origami manifold (M, ω) equipped with an effective Hamiltonian action of a torus T with $\dim T = \frac{1}{2} \dim M$.

NOTE: If $\mathcal{Z} = \emptyset$, a toric origami manifold is a toric symplectic manifold.
Example 1

\[T = (S^1)^2 \text{ acts on } (S^4, \omega_{\mathbb{C}^2} \oplus 0) \text{ by } \]

\[(t_1, t_2) \cdot (z_1, z_2, r) = (t_1 z_1, t_2 z_2, r) \]

with moment map

\[\mu(z_1, z_2, r) = (|z_1|^2, |z_2|^2). \]

Note that the fold is an equator \(S^3 \cong \{ (z_1, z_2, 0) \in S^4 \}. \)
Note that $S^4 \subset \mathbb{C}^2 \oplus \mathbb{R}$ has an origami form $\omega_{\mathbb{C}^2 \oplus 0}$. The origami form on S^4 is invariant under the involution $(z_1, z_2, r) \mapsto -(z_1, z_2, r)$.

Hence, it induces an origami form on $\mathbb{R}P^4 = S^4/\mathbb{Z}_2$ whose fold is $\mathbb{R}P^3 \cong \{[z_1, z_2, 0]\}$.

Furthermore, $\mathbb{R}P^4$ is a toric origami manifold with moment map

$$\mu[z_1, z_2, r] = (|z_1|^2, |z_2|^2).$$
Origami templates

$D_n = \text{the set of all Delzant polytopes in }\mathbb{R}^n$
$E_n = \text{the set of all subsets of }\mathbb{R}^n \text{ which are facets of elements of } D_n$
$G = \text{a graph (need not to be simple, i.e., } \exists \text{ multiple edges and loops)}$

An n-dimensional origami template consists of a graph G, called the template graph, and a pair of maps $\Psi_V : V \to D_n$ and $\Psi_E : E \to E_n$ such that

1. if e is an edge of G with end vertices u and v, then $\Psi_E(e)$ is a facet of a each of the polytopes $\Psi_V(u)$ and $\Psi_V(v)$, and these polytopes coincide near $\Psi_E(e)$; and
2. if v is an end vertex of each of two distinct edges e and f, then $\Psi_E(e) \cap \Psi_E(f) = \emptyset$.
Examples

\[\Psi_V(u) = \Psi_V(v) = P \]
\[\Psi_E(e) = F_3 \]

\[\Psi_V(u) = P \]
\[\Psi_E(e) = F_3 \]

\[\Psi_V(u) = P_1 \]
\[\Psi_V(v) = \Psi_V(w) = P_2 \]
\[\Psi_E(e) = F_2 \]
\[\Psi_E(e') = F_6 \]
Theorem [Cannas da Silva-Guillemin-Pires]

There is a one-to-one correspondence

\[
\{\text{toric origami manifolds}\} \leftrightarrow \{\text{origami templates}\},
\]

up to equivariant origami-symplectomorphism on the left-hand side, and
affine equivalence of the image of the template in \(\mathbb{R}^n\) on the right-hand side.
Properties

1. M is orientable $\iff G$ is bipartite.

2. The orbit space M/T is realized as $X = \bigsqcup_{v \in V} (v, \Psi_V(v))/\sim$, where $(u, x) \sim (v, y)$ if there exists an edge e with endpoints u and v.

 facets of X: $\bigsqcup_{v \in V} (v, F) \sim$

 F facet of $\Psi_V(v)$

 F not a fold facet

3. $X \sim G$.
Examples

\[S^4 / T \cong X = \bigcup \]

\[\Psi_V(u) = \Psi_V(v) = P \]
\[\Psi_E(e) = F_3 \]

\[\Psi_V(u) = P_1, \Psi_V(v) = P_2 \]
\[\Psi_E(e) = F_2 \]
\[\Psi_E(e') = F_6 \]

\[X \cong \bigcup \]

Seonjeong Park (NIMS)
Betti numbers of toric origami manifolds

14 / 24
Motivation

Theorem [Jurkiewicz]

Let (M, ω) be a symplectic toric manifold corresponding to a Delzant polytope P. Then $H^{\text{odd}} = 0$, $b_{2i}(M) = h_i(P)$, and $H^*(M) = \mathbb{Z}(P)/\mathcal{J}$.

Questions

Let M be a toric origami manifold whose origami template is (G, Ψ_V, Ψ_E).

1. Compute the Betti numbers of M by using the orbit space X.
2. Describe the cohomology ring of M by using the origami template.
Motivation

Theorem [Jurkiewicz]
Let \((M, \omega)\) be a symplectic toric manifold corresponding to a Delzant polytope \(P\). Then \(H^{odd} = 0\), \(b_{2i}(M) = h_i(P)\), and \(H^*(M) = \mathbb{Z}(P)/\mathcal{J}\).

Questions
Let \(M\) be a toric origami manifold whose origami template is \((G, \Psi_V, \Psi_E)\).

1. Compute the Betti numbers of \(M\) by using the orbit space \(X\).
2. Describe the cohomology ring of \(M\) by using the origami template.
Goal of this talk

[Masuda-Panov, 2006]

If a torus manifold M has a face-acyclic orbit space M/T, then $H^{\text{odd}}(M) = 0$ and the even-degree Betti numbers of M can be computed by using the face numbers of the orbit space.

For a toric origami manifold M, if the template graph G is a tree, then M is orientable, $M^T \neq \emptyset$, and M/T is face-acyclic. Hence M is a locally standard torus manifold whose orbit space is face-acyclic.

Goal

Let M be an orientable toric origami manifold such that every proper face of M/T is acyclic. Compute the Betti numbers of M.
Goal of this talk

[Masuda-Panov, 2006]

If a torus manifold M has a face-acyclic orbit space M/T, then $H^{\text{odd}}(M) = 0$ and the even-degree Betti numbers of M can be computed by using the face numbers of the orbit space.

For a toric origami manifold M, if the template graph G is a tree, then M is orientable, $M^T \neq \emptyset$, and M/T is face-acyclic. Hence M is a locally standard torus manifold whose orbit space is face-acyclic.

Goal

Let M be an orientable toric origami manifold such that every proper face of M/T is acyclic. Compute the Betti numbers of M.
Example

$\Psi_V(u) = P_1, \Psi_V(v) = P_2$

$\Psi_E(e) = F_2$

$\Psi_E(e') = F_6$

X is not acyclic but each proper face is acyclic.

X has a non-acyclic face of codim 1.
Proposition [With Masuda, 2013]

If a toric origami manifold M has a fixed point and the template graph G has no loop, then the quotient map $M \to M/T$ induces an isomorphism $q_* : \pi_1(M) \to \pi_1(M/T)$ and hence $\pi_1(M)$ is a free group.

Corollary

If G is bipartite and every proper face of M/T is acyclic, then

$$H_1(M) = \mathbb{Z}^{b_1(G)},$$

hence $b_1(M) = b_1(G)$.
Proposition [With Masuda, 2013]
If a toric origami manifold M has a fixed point and the template graph G has no loop, then the quotient map $M \to M/T$ induces an isomorphism $q_* : \pi_1(M) \to \pi_1(M/T)$ and hence $\pi_1(M)$ is a free group.

Corollary
If G is bipartite and every proper face of M/T is acyclic, then

$$H_1(M) = \mathbb{Z}^{b_1(G)},$$

hence $b_1(M) = b_1(G)$.
Setting

Let M be an orientable toric origami manifold associated with (G, Ψ_V, Ψ_E) with $b_1(G) > 1$. Choose an edge e in G such that $b_1(G - e) = b_1(G) - 1$.

\[
\begin{array}{ccc}
M & M' & B \\
\updownarrow & \updownarrow & \updownarrow \\
(G, \Psi_V, \Psi_E) & (G - e, \Psi_V, \Psi_E \setminus \{e\}) & \Psi_E(e)
\end{array}
\]
Theorem

Let M be a toric origami manifold such that all proper faces of M/T are acyclic. Then

$$b_{2i+1}(M) = 0, \ 1 \leq i \leq n - 2.$$

Moreover, if M' and B are as above, then

$$b_1(M') = b_1(M) - 1,$$
$$b_{2i}(M') = b_{2i}(M) + b_{2i}(B) + b_{2i-1}(B), \ 1 \leq i \leq n - 1.$$
Face numbers of \(M/T \)

Let \(M \) be a toric origami manifold of dim \(2n \) and \(P \) the simplicial poset dual to \(\partial(M/T) \). We define

\[
f_i = \begin{cases}
\text{the number of } (n - 1 - i) \text{-faces of } M/T, \\
\text{the number of } i\text{-simplices in } P \text{ for } i = 0, 1, \ldots, n - 1
\end{cases}
\]

and the \(h \)-vector \((h_0, h_1, \ldots, h_n)\) by

\[
\sum_{i=0}^{n-1} f_i (t - 1)^{n-1-i}.
\]

Lemma

Assume every proper face of \(M/T \) is acyclic.

\[
f_i(M'/T) = f_i(M/T) + 2f_{i-1}(F) + f_i(F) \text{ for } 0 \leq i \leq n - 1.
\]
Theorem

Let M be a toric origami manifold such that all proper faces of M/T are acyclic. Let $b_j := b_j(M)$. Then

$$
\sum_{i=0}^{n} b_{2i} t^i = \sum_{i=0}^{n} h_i t^i + b_1 (1 + t^n - (1 - t)^n),
$$

in other words, $b_0 = h_0 = 1$ and

$$
b_{2i} = h_i - (-1)^i \binom{n}{i} b_1, \text{ for } 1 \leq i \leq n - 1 \quad b_{2n} = h_n + (1 - (-1)^n)b_1.
$$
Remark

From the previous theorem, we get generalized Dehn-Sommerville relations for $\partial(M/T)$

$$h_{n-i} - h_i = (-1)^i((-1)^n - 1)b_1\binom{n}{i}$$

$$= (-1)^i(\chi(\partial(M/T)) - \chi(S^{n-1}))\binom{n}{i} \text{ for } 0 \leq i \leq n.$$