The Cohomology Algebra of Polyhedral Product Spaces

Qibing Zheng

School of Mathematical Science, Nankai University, China

ICM 2014 Satellite Conference
Topology of Torus Actions and Applications to Geometry and Combinatorics

August, 2014
The cohomology group

For two graded groups $A^*_\Lambda = \bigoplus_{\alpha \in \Lambda} A^*_\alpha$ and $B^*_\Lambda = \bigoplus_{\alpha \in \Lambda} B^*_\alpha$, their diagonal tensor product group with respect to the index set Λ is

$$A^*_\Lambda \otimes_\Lambda B^*_\Lambda = \bigoplus_{\alpha \in \Lambda} A^*_\alpha \otimes B^*_\alpha.$$

The usual tensor product is

$$A^*_\Lambda \otimes B^*_\Lambda = \bigoplus_{\alpha, \beta \in \Lambda} A^*_\alpha \otimes B^*_\beta.$$
The cohomology group

For a simplicial complex K with vertex set a subset of $[m]$ and a sequence of CW-complex pairs $(X, A) = \{(X_k, A_k)\}_{k=1}^m$, the polyhedral product space $Z(K; X, A)$ is the subspace of $X_1 \times \cdots \times X_m$ defined as follows. For a subset σ of $[m]$, define

$$D(\sigma) = Y_1 \times \cdots \times Y_m, \quad Y_k = \begin{cases} X_k & \text{if } k \in \sigma, \\ A_k & \text{if } k \notin \sigma. \end{cases}$$

Then $Z(K; X, A) = \bigcup_{\sigma \in K} D(\sigma)$.
The cohomology group

Let $\mathcal{Z}(K; X, A)$ be a polyhedral product space such that every ker i^*_k, coker i^*_k, im i^*_k are free modules over \mathbb{F}, where

$$i^*_k: H^*(X_k; \mathbb{F}) \rightarrow H^*(A_k; \mathbb{F})$$

is the singular cohomology homomorphism induced by the inclusion map. The cohomology group of the polyhedral product space is

$$H^*(\mathcal{Z}(K; X, A); \mathbb{F}) \cong H^*_{\gamma_m}(K) \otimes_{\gamma_m} H^*_{\gamma_m}(X, A).$$
The index set $\Upsilon_m = \{ (\sigma, \omega) \mid \sigma, \omega \subset [m], \sigma \cap \omega = \emptyset \}$.

The total cohomology group of K over \mathbb{F} is

$$H^*_{\Upsilon_m}(K) = \bigoplus_{(\sigma, \omega) \in \Upsilon_m} H^*_{\sigma, \omega}(K),$$

where $H^*_{\sigma, \omega}(K) = \tilde{H}^{*-1}(K_{\sigma, \omega}; \mathbb{F})$, the singular cohomology with degree uplifted by 1 and

$$K_{\sigma, \omega} = \text{link}_K \sigma|\omega = \{ \tau \mid \tau \subset \omega, \sigma \cup \tau \in K, \sigma \cap \tau = \emptyset \}$$

if $\sigma \in K$ and $K_{\sigma, \omega} = \{ \}$ if $\sigma \notin K$.
The cohomology group of \((X, A)\) over \(\mathbb{F}\) is

\[
H^*_{\mathcal{Y}_m}(X, A) = \bigoplus_{(\sigma, \omega) \in \mathcal{Y}_m} H^*_{\sigma, \omega}(X, A),
\]

where \(H^*_{\sigma, \omega}(X, A) = H^1 \otimes \cdots \otimes H^m\) with

\[
H^k = \begin{cases}
\ker i^*_k & \text{if } k \in \sigma, \\
\coker i^*_k & \text{if } k \in \omega, \\
\text{im} i^*_k \cong \text{coim} i^*_k & \text{otherwise}.
\end{cases}
\]
The cohomology algebra

An algebra \((A^*, \Pi)\) is a graded group \(A^*\) with product

\[
\Pi: A^* \otimes A^* \rightarrow A^*
\]

a graded group homomorphism. \(\Pi\) may not be associative.

If an algebra \((A^*_\Lambda, \Pi)\) satisfies \(A^*_\Lambda = \bigoplus_{\alpha \in \Lambda} A^*_\alpha\), then the product \(\Pi\) is determined by all its restriction product

\[
\Pi_{\alpha, \beta, \gamma}: A^*_\beta \otimes A^*_\gamma \xrightarrow{i} A^*_\Lambda \otimes A^*_\Lambda \xrightarrow{\Pi} A^*_\Lambda \xrightarrow{p} A^*_\alpha,
\]

where \(i\) is the inclusion and \(p\) is the projection, since for \(b \in A^*_\beta\) and \(c \in A^*_\gamma\),

\[
\Pi(b \otimes c) = \Sigma_{\alpha \in \Lambda} \Pi_{\alpha, \beta, \gamma}(b \otimes c) \text{ with } \Pi_{\alpha, \beta, \gamma}(b \otimes c) \in A^*_\alpha.
\]
The cohomology algebra

For algebras \((A^*_\Lambda = \bigoplus_{\alpha \in \Lambda} A_\alpha, \Pi_1)\) and \((B^*_\Lambda = \bigoplus_{\alpha \in \Lambda} B_\alpha, \Pi_2)\), their diagonal tensor product algebra \((A^*_\Lambda \otimes_\Lambda B^*_\Lambda, \Pi_1 \otimes_\Lambda \Pi_2)\) with respect to \(\Lambda\) is defined as follows. For

\[
a'_\beta \in A^*_\beta, \ a''_\gamma \in A^*_\gamma \text{ with } \Pi_1(a'_\beta \otimes a''_\gamma) = \Sigma_{\alpha \in \Lambda} a_\alpha, \ a_\alpha \in A^*_\alpha,
\]

\[
b'_\beta \in B^*_\beta, \ b''_\gamma \in B^*_\gamma \text{ with } \Pi_2(b'_\beta \otimes b''_\gamma) = \Sigma_{\alpha \in \Lambda} b_\alpha, \ b_\alpha \in B^*_\alpha,
\]

\[
(\Pi_1 \otimes_\Lambda \Pi_2)\left((a'_\beta \otimes b'_\beta) \otimes (a''_\gamma \otimes b''_\gamma)\right) = (-1)^{|a''_\gamma||b'_\beta|} \Sigma_{\alpha \in \Lambda} a_\alpha \otimes b_\alpha.
\]

Equivalently, the restriction products of the three algebras satisfy

\[
(\Pi_1 \otimes_\Lambda \Pi_2)_{\alpha'}^{\beta,\gamma} = (\Pi_1)_{\alpha'}^{\beta,\gamma} \otimes (\Pi_2)_{\alpha'}^{\beta,\gamma}.
\]
The cohomology algebra

Let $\mathcal{Z}(K; X, A)$ be a polyhedral product space such that every $\ker i_k^*$, $\coker i_k^*$, $\text{im} i_k^*$ are free modules over \mathbb{F}, the cohomology algebra of the polyhedral product space is

$$(H^*(\mathcal{Z}(K; X, A); \mathbb{F}), \cup)$$

$$\cong (H_{\Upsilon_m}^*(K) \otimes_{\Upsilon_m} H_{\Upsilon_m}^*(X, A), \cup K \otimes_{\Upsilon_m} \Pi(X, A)).$$
The universal cohomology algebra \((H^*_\gamma_m(K), \cup_K)\) is defined as follows. The restriction product

\[\bigcup^R_K : H^*_\sigma,\omega'(K) \otimes H^*_\sigma'',\omega''(K) \to H^*_\sigma,\omega(K)\]

of \(\cup_K\) is induced by the cochain complex homomorphism

\[\Pi^R_K : \tilde{C}^*(K_{\sigma'},\omega') \otimes \tilde{C}^*(K_{\sigma''},\omega'') \to \tilde{C}^*(K_{\sigma},\omega)\]

defined as follows.
The cohomology algebra

(1) $\Pi^R_K = 0$ if $\sigma' \cup \sigma'' \not\subset \sigma$ or $\omega \not\subset \omega' \cup \omega''$.

(2) For $\{i_1, \ldots, i_s\} \in \widehat{C}^*(K_{\sigma'}, \omega')$, $\{j_1, \ldots, j_t\} \in \widehat{C}^*(K_{\sigma''}, \omega'')$ and $\sigma' \cup \sigma'' \subset \sigma$, $\omega \subset \omega' \cup \omega''$,

$$\Pi^R_K(\{i_1, \ldots, i_s\} \otimes \{j_1, \ldots, j_t\}) = 0$$

if $\{i_1, \ldots, i_s\} \cap \{j_1, \ldots, j_t\} \neq \emptyset$ or $\{j_1, \ldots, j_t\} \cap \omega' \neq \emptyset$, and otherwise,

$$\Pi^R_K(\{i_1, \ldots, i_s\} \otimes \{j_1, \ldots, j_t\}) = (-1)^\tau \{k_1, \ldots, k_u\},$$

where $\{k_1, \ldots, k_u\} = \{i_1, \ldots, i_s\} \cup \{j_1, \ldots, j_t\}$ and $(-1)^\tau$ is the sign of the permutation $\begin{pmatrix} i_1 & \ldots & i_s & j_1 & \ldots & j_t \\ k_1 & \ldots & k_s & k_{s+1} & \ldots & k_u \end{pmatrix}$ and s, t, u may be 0.
The cohomology algebra of \((X, A)\) is
\[
(H^_\ast \left(X _1, A _1 \right) \otimes \cdots \otimes H^_\ast \left(X _m, A _m \right), \Pi _1 \otimes \cdots \otimes \Pi _m)
\]
with \(\Pi _k\) on \(H^_\ast \left(X _k, A _k \right) = \ker i^_k \oplus \coker i^_k \oplus \im i^_k\) defined as follows.

1. \(\Pi _k \left(x \otimes y \right) = \Pi _X _k \left(x \otimes y \right)\) for all \(x, y \in \ker i^_k \oplus \im i^_k = \ker i^_k \oplus \coim i^_k = H^\ast \left(X _k \right)\),
2. \(\Pi _k \left(a \otimes b \right) = \Pi _A _k \left(a \otimes b \right)\) for all \(a, b \in H^\ast \left(A _k \right)\) such that \(a\) or \(b\) is in \(\coker i^_k\),
3. \(\Pi _k \left(x \otimes a \right) = \Pi _k \left(a \otimes x \right) = 0\) for all \(x \in \ker i^_k\) and \(a \in \coker i^_k\).
The applications

The normal algebra \((H^*_{\widehat{\text{ym}}}(K), \widehat{\cup}_K)\) of \(K\) is defined as follows. The restriction product

\[
H^*_{\sigma', \omega'}(K) \otimes H^*_{\sigma'', \omega''}(K) \rightarrow H^*_\sigma, \omega(K)
\]

of \(\widehat{\cup}_K\) coincides with the restriction product of the universal product \(\cup_K\) if \(\sigma' \cup \sigma'' = \sigma\) and \(\omega = \omega' \cup \omega''\) and all other restriction products of \(\widehat{\cup}_K\) is 0.

The special algebra \((H^*_{\text{ym}}(K), \cup_K)\) of \(K\) is defined as follows. The restriction product

\[
H^*_{\sigma', \omega'}(K) \otimes H^*_{\sigma'', \omega''}(K) \rightarrow H^*_\sigma, \omega(K)
\]

of \(\cup_K\) coincides with the restriction product of the universal product \(\cup_K\) if \(\sigma' \sqcup \sigma'' = \sigma\) and \(\omega = \omega' \sqcup \omega''\) and all other restriction products of \(\widehat{\cup}_K\) is 0.
The applications

Suppose for \(k = 1, \ldots, m \), \(H^*_\Upsilon(X_k, A_k) \) is a free module such that \(\text{coker} \ i^*_k \) is an ideal of \(H^*(A_k) \) and \(\text{coim} \ i^*_k = \text{im} \ i^*_k \) is a subalgebra of both \(H^*(A_k) \) and \(H^*(X_k) \). So \((H^*_\Upsilon m (X, A), \Pi_{(X, A)}) \) is an associative, commutative algebra with unit. Then

\[
(H^*(\mathcal{Z}(K; X, A)), \cup) \cong (H^*_{\Upsilon m} (K) \otimes_{\Upsilon m} H^*_\Upsilon m (X, A), \overline{\cup}_K \otimes_{\Upsilon m} \Pi_{(X, A)}).
\]

Specifically,

\[
(H^*(\mathcal{Z}(K; SX, SA)), \cup) \cong (H^*_{\Upsilon m} (K) \otimes_{\Upsilon m} H^*_\Upsilon m (SX, SA), \overline{\cup}_K \otimes_{\Upsilon m} \Pi_{(X, A)}).
\]
The applications

Let $\mathcal{L}_m = \{ (\sigma, \emptyset) \in \Upsilon_m \}$, $\mathcal{R}_m = \{ (\emptyset, \omega) \in \Upsilon_m \}$.

The left universal algebra $(H^*_\mathcal{L}_m(K), \cup_K)$ of K is the subalgebra of $(H^*_\Upsilon_m(K), \cup_K)$ with $H^*_\mathcal{L}_m(K) = \bigoplus_{(\sigma, \emptyset) \in \mathcal{L}_m} H^*_\sigma,\emptyset(K)$.

The right universal algebra $(H^*_\mathcal{R}_m(K), \cup_K)$ of K is the quotient algebra of $(H^*_\Upsilon_m(K), \cup_K)$ over the ideal $\bigoplus_{(\sigma, \omega) \in \Upsilon_m, \sigma \neq \emptyset} H^*_\sigma,\omega(K)$.

When the vertex set of K is $[m]$, by Hochster theorem,

$$H^*_\mathcal{R}_m(K) \cong \bigoplus_{\omega \subseteq [m]} H^*(K|\omega) \cong \text{Tor}^*_\mathbb{F}[x_1, \ldots, x_m](\mathbb{F}(K), \mathbb{F}),$$

where $\mathbb{F}(K)$ is the Stanley-Reisner face ring of K.
Suppose $H^*_\Upsilon(X_k, A_k)$ is a free module.

The left cohomology algebra $H^*_{L_m}(X, A)$ of (X, A) is the subalgebra of $H^*_\Upsilon(X, A)$ with

$$H^*_{L_m}(X, A) = \bigoplus_{(\sigma, \emptyset) \in L_m} H^*_{\sigma, \emptyset}(X, A).$$

The right cohomology algebra $H^*_{R_m}(X, A)$ of (X, A) is the quotient algebra of $H^*_\Upsilon(X, A)$ modular the ideal

$$\bigoplus_{(\sigma, \omega) \in \Upsilon_m, \sigma \neq \emptyset} H^*_{\sigma, \omega}(X, A).$$
The applications

If every $i_k^*: H^*(X_k) \to H^*(A_k)$ is an epimorphism between free modules, then

$$\left(H^*(Z(K; X, A)), \cup \right) \cong \left(H^*_{Lm}(X, A), \Pi_{(X,A)} \right).$$

Specifically, if $(X_k, A_k) = (CP^\infty, *)$ for all k, then

$$H^*_{Lm}(X, A) \cong \mathbb{F}(K).$$

If every $i_k^*: H^*(X_k) \to H^*(A_k)$ is a monomorphism between free modules, then

$$\left(H^*(Z(K; X, A)), \cup \right) \cong \left(H^*_m(K) \otimes R_m H^*(A_1 \times \cdots \times A_m), \cup K \otimes R_m \cup \right).$$