Hamiltonian loops on symplectic blow ups

Andrés Pedroza

Universidad de Colima
The set up and the problems

Consider \((M, \omega)\) a closed symplectic manifold and \(\text{Ham}(M, \omega)\) the group of Hamiltonian diffeomorphisms.
The set up and the problems

Consider \((M, \omega)\) a closed symplectic manifold and \(\text{Ham}(M, \omega)\) the group of Hamiltonian diffeomorphisms.

Problem.

- Understand the homotopy type of \(\text{Ham}(M, \omega)\).
The set up and the problems

Consider \((M, \omega)\) a closed symplectic manifold and \(\text{Ham}(M, \omega)\) the group of Hamiltonian diffeomorphisms.

Problem.

- Understand the homotopy type of \(\text{Ham}(M, \omega)\).
- Determine \(\pi_1(\text{Ham}(M, \omega))\).
Known results

- \(\text{Ham}(S^2, \omega) \cong SO(3) \). (Smale)
Known results

- \(\text{Ham}(S^2, \omega) \simeq SO(3) \). (Smale)
- \(\text{Ham}(S^2 \times S^2, \omega \oplus \lambda \omega) \) for \(\lambda \geq 1 \). (Gromov, McDuff, Abreu, Lalonde, etc.)
Known results

- $\text{Ham}(S^2, \omega) \simeq SO(3)$. (Smale)
- $\text{Ham}(S^2 \times S^2, \omega \oplus \lambda \omega)$ for $\lambda \geq 1$. (Gromov, McDuff, Abreu, Lalonde, etc.)
- $\text{Ham}(\mathbb{C}P^2, \omega_{FS}) \simeq PU(3)$. (Gromov)
Tools to compute π_1 and the goal of the talk

There are several tools to understand the fundamental group of $\text{Ham}(M, \omega)$ and $\text{Symp}(M, \omega)$
Tools to compute π_1 and the goal of the talk

There are several tools to understand the fundamental group of $\text{Ham}(M, \omega)$ and $\text{Symp}(M, \omega)$

- **Flux**: $\pi_1(\text{Symp}(M, \omega)) \to H^*(M; \mathbb{R})$
- **S**: $\pi_1(\text{Ham}(M, \omega)) \to QH^*(M, \Lambda)$
- **A**: $\pi_1(\text{Ham}(M, \omega)) \to \mathbb{R}/\mathcal{P}(M, \omega)$.

Our aim is to show that some loops in $\text{Ham}(M, \omega)$ induced nontrivial loops in $\text{Ham}(\tilde{M}, \tilde{\omega}_\rho)$. $(\tilde{M}, \tilde{\omega}_\rho)$ is the one point blow up of weight ρ of (M, ω).

Tools to compute π_1 and the goal of the talk

There are several tools to understand the fundamental group of $\text{Ham}(M, \omega)$ and $\text{Symp}(M, \omega)$

- **Flux**: $\pi_1(\text{Symp}(M, \omega)) \to H^*(M; \mathbb{R})$
- **S**: $\pi_1(\text{Ham}(M, \omega)) \to QH^*(M, \Lambda)$
- **A**: $\pi_1(\text{Ham}(M, \omega)) \to \mathbb{R}/\mathcal{P}(M, \omega)$.

Our **aim** is to show that some loops in $\text{Ham}(M, \omega)$ induced nontrivial loops in $\text{Ham}(\tilde{M}, \tilde{\omega}_\rho)$.

$(\tilde{M}, \tilde{\omega}_\rho)$: is the one point blow up of weight ρ of (M, ω).
Consider \((\mathbb{C}P^n, \omega_{FS})\) for \(n \geq 2\) and the Hamiltonian circle action

\[e^{2\pi it} \cdot [z_0 : \cdots : z_n] = [z_0 : e^{2\pi it} z_1 : \cdots : e^{2\pi int} z_n]\]

Let \(\psi\) be the corresponding Hamiltonian loop.
Example: Complex projective space

Consider \((\mathbb{C}P^n, \omega_{FS})\) for \(n \geq 2\) and the Hamiltonian circle action

\[
e^{2\pi it} \cdot [z_0 : \cdots : z_n] = [z_0 : e^{2\pi it} z_1 : \cdots : e^{2\pi int} z_n]
\]

Let \(\psi\) be the corresponding Hamiltonian loop.

- \(x_0 = [1 : 0 : \cdots : 0]\) is fixed by the action.
- Blow up \((\mathbb{C}P^n, \omega_{FS})\) at \(x_0\) to get \((\widetilde{\mathbb{C}P}^n, \tilde{\omega}_\rho)\)
Example: Complex projective space

Consider \((\mathbb{C}P^n, \omega_{FS})\) for \(n \geq 2\) and the Hamiltonian circle action

\[e^{2\pi it} \cdot [z_0 : \cdots : z_n] = [z_0 : e^{2\pi it} z_1 : \cdots : e^{2\pi it} z_n] \]

Let \(\psi\) be the corresponding Hamiltonian loop.

- \(x_0 = [1 : 0 \cdots : 0]\) is fixed by the action.
- Blow up \((\mathbb{C}P^n, \omega_{FS})\) at \(x_0\) to get \((\tilde{\mathbb{C}}P^n, \tilde{\omega}_\rho)\)
- The loop \(\psi\) induces a Hamiltonian loop \(\tilde{\psi}\) on the blow up
Weinstein’s morphism

\[A : \pi_1(\text{Ham}(M, \omega)) \to \mathbb{R}/\mathcal{P}(M, \omega) \]
Weistein’s morphism

\[A : \pi_1(\text{Ham}(M,\omega)) \to \mathbb{R}/\mathcal{P}(M,\omega) \]

Here \(\mathcal{P}(M,\omega) \) is the period group. Is the image of

\[[\omega] \cdot H_2(M;\mathbb{R}) \to \mathbb{R} \]
Weistein’s morphism

\[A : \pi_1(\text{Ham}(M, \omega)) \to \mathbb{R}/\mathcal{P}(M, \omega) \]

Here \(\mathcal{P}(M, \omega) \) is the period group. Is the image of

\[[\omega] \cdot H_2(M; \mathbb{R}) \to \mathbb{R} \]

In our example

- \(\mathcal{P}(\mathbb{C}P^n, \omega_{FS}) = \mathbb{Z}_\pi \)
- \(\mathcal{P}(\tilde{\mathbb{C}}P^n, \tilde{\omega}_\rho) = \mathbb{Z}_\pi + \mathbb{Z}_\pi \rho^2 \)
Weinsteins morphism

For our initial loop ψ in

$$\text{Ham}(\mathbb{C}P^n, \omega_{FS})$$

we have

$$A[\psi] = \left[-\frac{n}{2} \pi \right] \in \mathbb{R}/\mathbb{Z}\langle \pi \rangle$$
For our initial loop ψ in

$$\text{Ham}(\mathbb{C}P^n, \omega_{FS})$$

we have

$$A[\psi] = \left[-\frac{n}{2}\pi \right] \in \mathbb{R}/\mathbb{Z}\langle \pi \rangle$$

and in the blow up, $\tilde{\psi} \in \text{Ham}(\hat{\mathbb{C}}P^n, \tilde{\omega}_\rho)$

$$A(\tilde{\psi}) = \left[-\frac{n}{2}\pi + \frac{\pi \rho^{2n}}{2(1 - \rho^{2n})} \left(\frac{\rho^2}{(n-1)!} - n \right) \right] \in \mathbb{R}/\mathbb{Z}\langle \pi, \pi \rho^2 \rangle.$$
Results

Theorem (P.)

Let ψ be the Hamiltonian loop defined above and $0 < \rho < 1$. Then ψ induces a loop $\tilde{\psi}$ in $\text{Ham}(\widetilde{\mathbb{C}P^n}, \tilde{\omega}_\rho)$ and

- $\tilde{\psi}$ has finite order in $\pi_1(\text{Ham}(\mathbb{C}P^n, \omega))$ if ρ^2 is rational;
- $\tilde{\psi}$ has infinite order in $\pi_1(\text{Ham}(\mathbb{C}P^n, \omega))$ if ρ^2 is transcendental.
Results

Theorem (P.)

Let ψ be the Hamiltonian loop defined above and $0 < \rho < 1$. Then ψ induces a loop $\tilde{\psi}$ in $\text{Ham}(\tilde{\mathbb{C}P}^n, \tilde{\omega}_\rho)$ and

- $\tilde{\psi}$ has finite order in $\pi_1(\text{Ham}(\tilde{\mathbb{C}P}^n, \tilde{\omega}_\rho))$ if ρ^2 is rational;
- $\tilde{\psi}$ has infinite order in $\pi_1(\text{Ham}(\tilde{\mathbb{C}P}^n, \tilde{\omega}_\rho))$ if ρ^2 is transcendental.

Theorem (P.)

Let (M, ω) be a closed symplectic manifold and $(\tilde{M}, \tilde{\omega}_\rho)$ the blow up at $x_0 \in M$ of weight ρ. If $\psi \in \pi_1(\text{Ham}(M, \omega))$ has a representative that can be lifted to a loop $\tilde{\psi}$ in $\text{Ham}(\tilde{M}, \tilde{\omega}_\rho)$, then

$$\mathcal{A}_{\tilde{M}}(\tilde{\psi}) = \left[\mathcal{A}_M(\psi) + \int_0^1 c_\rho(M, \omega, H_t) dt \right]$$

in $\mathbb{R}/\mathcal{P}(\tilde{M}, \tilde{\omega}_\rho)$ where H_t is the normalized Hamiltonian function of the loop ψ.