Combinatorial properties of subspace arrangements

Sangwook Kim

Chonnam National University

2013 Korea Toric Topology Winter Workshop
January 4, 2013
Hyperplane arrangements

Simplicial complexes and subspace arrangements

Diagonal subspace arrangements

Coordinate subspace arrangements
1. Hyperplane arrangements

2. Simplicial complexes and subspace arrangements

3. Diagonal subspace arrangements

4. Coordinate subspace arrangements
1. Hyperplane arrangements

2. Simplicial complexes and subspace arrangements

3. Diagonal subspace arrangements

4. Coordinate subspace arrangements
Outline

1. Hyperplane arrangements
2. Simplicial complexes and subspace arrangements
3. Diagonal subspace arrangements
4. Coordinate subspace arrangements
Definition

A **subspace arrangement** is a finite collection of affine subspaces in the vector space \mathbb{K}^n for some field \mathbb{K}.

Definition

A **hyperplane arrangement** is a subspace arrangement of codimension 1 subspaces.

There is a long tradition of work on hyperplane arrangements.

Definition

The intersection semilattice $L_\mathcal{A}$ of a subspace arrangement \mathcal{A} is the collection of all nonempty intersections of subspaces of \mathcal{A} ordered by reverse inclusion.
Subspace arrangements

Definition

A **subspace arrangement** is a finite collection of affine subspaces in the vector space \mathbb{K}^n for some field \mathbb{K}.

Definition

A **hyperplane arrangement** is a subspace arrangement of codimension 1 subspaces.

There is a long tradition of work on hyperplane arrangements.

Definition

The **intersection semilattice** $L_\mathcal{A}$ of a subspace arrangement \mathcal{A} is the collection of all nonempty intersections of subspaces of \mathcal{A} ordered by reverse inclusion.
A **subspace arrangement** is a finite collection of affine subspaces in the vector space \mathbb{K}^n for some field \mathbb{K}.

A **hyperplane arrangement** is a subspace arrangement of codimension 1 subspaces.

- There is a long tradition of work on hyperplane arrangements.

The intersection semilattice $L_\mathcal{A}$ of a subspace arrangement \mathcal{A} is the collection of all nonempty intersections of subspaces of \mathcal{A} ordered by reverse inclusion.
A **subspace arrangement** is a finite collection of affine subspaces in the vector space \mathbb{K}^n for some field \mathbb{K}.

A **hyperplane arrangement** is a subspace arrangement of codimension 1 subspaces.

There is a long tradition of work on hyperplane arrangements.

The **intersection semilattice** $L_\mathcal{A}$ of a subspace arrangement \mathcal{A} is the collection of all nonempty intersections of subspaces of \mathcal{A} ordered by reverse inclusion.
Combinatorial tradition (\mathbb{R}-arrangements)

Theorem (Zaslavsky, 1975)

Let A be a hyperplane arrangement in \mathbb{R}^n. Then

The number of regions $= \sum_{x \in L_A} |\mu(\hat{0}, x)|$

The number of bounded regions $= |\sum_{x \in L_A} \mu(\hat{0}, x)|$

Example

12 regions
5 bounding regions
Theorem (Zaslavsky, 1975)

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^n. Then

The number of regions

$$\sum_{x \in L_A} |\mu(\hat{0}, x)|$$

The number of bounded regions

$$|\sum_{x \in L_A} \mu(\hat{0}, x)|$$

Example

- 12 regions
- 2 bounded regions
Theorem (Zaslavsky, 1975)

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^n. Then

The number of regions $= \sum_{x \in L_{\mathcal{A}}} |\mu(\hat{0}, x)|$

The number of bounded regions $= |\sum_{x \in L_{\mathcal{A}}} \mu(\hat{0}, x)|$

Example

12 regions
2 bounded regions
Theorem (Zaslavsky, 1975)

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^n. Then

\[
\text{The number of regions} = \sum_{x \in L_{\mathcal{A}}} |\mu(\hat{0}, x)|
\]

\[
\text{The number of bounded regions} = |\sum_{x \in L_{\mathcal{A}}} \mu(\hat{0}, x)|
\]

Example

- 12 regions
- 2 bounded regions
Theorem (Orlik & Slomon, 1980)

Let A be a hyperplane arrangement in \mathbb{C}^d with complement M_A. Then

$$\beta^i(M_A) = \sum_{x \in L_A, \text{codim}_C(x) = i} |\mu(\hat{0}, x)|$$

where $\beta^i(M_A)$ is the rank of the cohomology group $H^i(M_A)$.

Two theorems are related

If A is an \mathbb{R}-arrangement and A^C is its complexification,

The number of regions $= \sum_{i \geq 0} \beta^i(M_{A^C})$

The number of bounded regions $= |\chi(M_{A^C})|$
Theorem (Orlik & Slomon, 1980)

Let \mathcal{A} be a hyperplane arrangement in \mathbb{C}^d with complement $M_{\mathcal{A}}$. Then

$$\beta^i(M_{\mathcal{A}}) = \sum_{\substack{x \in L_{\mathcal{A}} \\
\text{codim}_\mathbb{C}(x) = i}} |\mu(0, x)|$$

where $\beta^i(M_{\mathcal{A}})$ is the rank of the cohomology group $H^i(M_{\mathcal{A}})$.

Two theorems are related

If \mathcal{A} is an \mathbb{R}-arrangement and $\mathcal{A}^\mathbb{C}$ is its complexification,

The number of regions $= \sum_{i \geq 0} \beta^i(M_{\mathcal{A}^\mathbb{C}})$

The number of bounded regions $= |\chi(M_{\mathcal{A}^\mathbb{C}})|$
Outline

1. Hyperplane arrangements
2. Simplicial complexes and subspace arrangements
3. Diagonal subspace arrangements
4. Coordinate subspace arrangements
Simplicial complexes and shellability

Definition

An (abstract) simplicial complex Δ on a finite vertex set V is a collection of subsets of V satisfying

$$\tau \subset \sigma \in \Delta \Rightarrow \tau \in \Delta.$$

- $\dim \sigma = |\sigma| - 1$ and $\dim \Delta = \max_{\sigma \in \Delta} \dim \sigma$.
- The elements of Δ are faces and the maximal faces are facets.
- Δ is pure if each facet has the same dimension.

Definition

A simplicial complex is shellable if its facets can be arranged in linear order F_1, F_2, \ldots, F_t in such a way that the subcomplex $(\bigcup_{i=1}^{k-1} 2^{F_i}) \cap 2^{F_k}$ is pure and $(\dim F_k - 1)$-dimensional for all $k = 2, \ldots, t$. Such an ordering of facets is called a shelling order or shelling.
An (abstract) simplicial complex Δ on a finite vertex set V is a collection of subsets of V satisfying

$$\tau \subset \sigma \in \Delta \Rightarrow \tau \in \Delta.$$

- $\dim \sigma = |\sigma| - 1$ and $\dim \Delta = \max_{\sigma \in \Delta} \dim \sigma$.
- The elements of Δ are faces and the maximal faces are facets.
- Δ is pure if each facet has the same dimension.

A simplicial complex is shellable if its facets can be arranged in linear order F_1, F_2, \ldots, F_t in such a way that the subcomplex $(\bigcup_{i=1}^{k-1} 2^{F_i}) \cap 2^{F_k}$ is pure and $(\dim F_k - 1)$-dimensional for all $k = 2, \ldots, t$. Such an ordering of facets is called a shelling order or shelling.
Simplicial complexes and shellability

Definition

An (abstract) simplicial complex Δ on a finite vertex set V is a collection of subsets of V satisfying

$\tau \subset \sigma \in \Delta \Rightarrow \tau \in \Delta$.

- $\dim \sigma = |\sigma| - 1$ and $\dim \Delta = \max_{\sigma \in \Delta} \dim \sigma$.
- The elements of Δ are faces and the maximal faces are facets.
- Δ is pure if each facet has the same dimension.

Definition

A simplicial complex is shellable if its facets can be arranged in linear order F_1, F_2, \ldots, F_t in such a way that the subcomplex $(\bigcup_{i=1}^{k-1} 2^{F_i}) \cap 2^{F_k}$ is pure and $(\dim F_k - 1)$-dimensional for all $k = 2, \ldots, t$. Such an ordering of facets is called a shelling order or shelling.
An (abstract) simplicial complex Δ on a finite vertex set V is a collection of subsets of V satisfying

$$\tau \subset \sigma \in \Delta \Rightarrow \tau \in \Delta.$$

- $\dim \sigma = |\sigma| - 1$ and $\dim \Delta = \max_{\sigma \in \Delta} \dim \sigma$.
- The elements of Δ are faces and the maximal faces are facets.
- Δ is pure if each facet has the same dimension.

A simplicial complex is shellable if its facets can be arranged in linear order F_1, F_2, \ldots, F_t in such a way that the subcomplex $(\bigcup_{i=1}^{k-1} 2^{F_i}) \cap 2^{F_k}$ is pure and $(\dim F_k - 1)$-dimensional for all $k = 2, \ldots, t$. Such an ordering of facets is called a shelling order or shelling.
Simplicial complexes and shellability

Definition

An (abstract) simplicial complex Δ on a finite vertex set V is a collection of subsets of V satisfying

$$\tau \subset \sigma \in \Delta \Rightarrow \tau \in \Delta.$$

- $\dim \sigma = |\sigma| - 1$ and $\dim \Delta = \max_{\sigma \in \Delta} \dim \sigma$.
- The elements of Δ are faces and the maximal faces are facets.
- Δ is pure if each facet has the same dimension.

Definition

A simplicial complex is shellable if its facets can be arranged in linear order F_1, F_2, \ldots, F_t in such a way that the subcomplex $\left(\bigcup_{i=1}^{k-1} 2^{F_i} \right) \cap 2^{F_k}$ is pure and $(\dim F_k - 1)$-dimensional for all $k = 2, \ldots, t$. Such an ordering of facets is called a shelling order or shelling.
Example

Theorem (Björner and Wachs, 1996)

A (nonpure) shellable simplicial complex is homotopy equivalent to

\[
\bigvee_{F \text{ runs over all fully attached facets}} S^\dim F
\]

where \(F\) runs over all fully attached facets.
Simplicial complexes and shellability

Example

![Diagram](image)

Facets

<table>
<thead>
<tr>
<th>F</th>
<th>$\mathcal{R}(F)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>\emptyset</td>
</tr>
<tr>
<td>234</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Theorem (Björner and Wachs, 1996)

A (nonpure) shellable simplicial complex is homotopy equivalent to

$$\bigvee_{F} S^{\dim F}$$

where F runs over all fully attached facets.
Example

<table>
<thead>
<tr>
<th>Facets</th>
<th>minimal new face</th>
<th>$\mathcal{R}(F)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
<td>\emptyset</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>234</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

Theorem (Björner and Wachs, 1996)

A (nonpure) shellable simplicial complex is homotopy equivalent to

$$\bigvee_{F \in \mathcal{F}} \mathbb{S}^{\dim F}$$

where F runs over all fully attached facets.
Simplicial complexes and shellability

Example

Facets

\[F \]

minimal new face

\[\mathcal{R}(F) \]

Theorem (Björner and Wachs, 1996)

A (nonpure) shellable simplicial complex is homotopy equivalent to

\[\bigvee_{F} S^{\dim F} \]

where \(F \) runs over all fully attached facets.
Example

Facets

\[F \]

\[123 \]

\[234 \]

\[35 \]

\[45 \]

minimal new face

\[\mathcal{R}(F) \]

\[\emptyset \]

\[4 \]

\[5 \]

\[45 \]

Theorem (Björner and Wachs, 1996)

A (nonpure) shellable simplicial complex is homotopy equivalent to

\[\bigvee_{F} S^{\dim F} \]

where \(F \) runs over all fully attached facets.
A (nonpure) shellable simplicial complex is homotopy equivalent to

\[\bigvee_{F \text{ runs over all fully attached facets}} \bigwedge^{\dim F} \mathcal{R}(F) \]

where \(F \) runs over all fully attached facets.
Example

Facets

\begin{align*}
F & \quad \mathcal{R}(F) \\
123 & \quad \emptyset \\
234 & \quad 4 \\
35 & \quad 5 \\
45 & \quad 45
\end{align*}

Theorem (Björner and Wachs, 1996)

A (nonpure) shellable simplicial complex is homotopy equivalent to

$$\bigvee_{F} S^{\dim F}$$

where \(F\) runs over all fully attached facets.
Example

Facets

\[F \]

\[123 \]

\[234 \]

\[35 \]

\[45 \]

minimal new face

\[R(F) \]

\[\emptyset \]

\[4 \]

\[5 \]

\[45 \]

Theorem (Björner and Wachs, 1996)

A (nonpure) shellable simplicial complex is homotopy equivalent to

\[\bigvee_{\dim F} S^\dim F \]

where \(F \) runs over all fully attached facets.
Simplicial complexes and shellability

Example

Facets

\(F \)

\begin{align*}
F & \quad \mathcal{R}(F) \\
123 & \quad \emptyset \\
234 & \quad 4 \\
35 & \quad 5 \\
45 & \quad 45
\end{align*}

Theorem (Björner and Wachs, 1996)

A (nonpure) shellable simplicial complex is homotopy equivalent to

\[
\bigvee_{F} S^{\dim F}
\]

where \(F \) runs over all fully attached facets.
Simplicial complexes and shellability

Example

Facets
F
123
234
35
45

minimal new face
\(\mathcal{R}(F) \)
\(\emptyset \)
4
5
45

Theorem (Björner and Wachs, 1996)

A (nonpure) shellable simplicial complex is homotopy equivalent to

\[
\bigvee_{F} S^{\dim F}
\]

where \(F \) runs over all fully attached facets.
A (nonpure) shellable simplicial complex is homotopy equivalent to

\[\bigvee_{\dim F} S^{\dim F} \]

where \(F \) runs over all fully attached facets.
Simplicial complexes and shellability

Example

Facets
\[F \]
\[F_1 \]
\[F_2 \]
\[F_3 \]
\[F_4 \]

minimal new face
\[\mathcal{R}(F) \]
\[\emptyset \]
\[4 \]
\[5 \]
\[45 \]

Theorem (Björner and Wachs, 1996)

A (nonpure) shellable simplicial complex is homotopy equivalent to

\[\bigvee_{F} S^{\dim F} \]

where \(F \) runs over all fully attached facets.

Sangwook Kim (CNU) Combinatorial properties of subspace arrangements January 4, 2013 9 / 32
Simplicial complexes and shellability

Example

<table>
<thead>
<tr>
<th>Facets</th>
<th>minimal new face</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>$\mathcal{R}(F)$</td>
</tr>
<tr>
<td>123</td>
<td>\emptyset</td>
</tr>
<tr>
<td>234</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Theorem (Björner and Wachs, 1996)

A (nonpure) shellable simplicial complex is homotopy equivalent to

$$\bigvee_{F} S^{\dim F}$$

where F runs over all fully attached facets.
The order complex of a poset

Definition

The order complex of a poset P is the simplicial complex whose vertices are the elements of P and whose faces are the chains of P.

Example

A poset P

The order complex of P

Definition

A finite lattice L has some topological properties, such as shellability, if the order complex of $\overline{L} = L - \{\hat{0}, \hat{1}\}$ has those properties.
The order complex of a poset

Definition

The order complex of a poset P is the simplicial complex whose vertices are the elements of P and whose faces are the chains of P.

Example

A poset P

A finite lattice L has some topological properties, such as shellability, if the order complex of $\bar{L} = L - \{\hat{0}, \hat{1}\}$ has those properties.
The order complex of a poset

Definition

The order complex of a poset P is the simplicial complex whose vertices are the elements of P and whose faces are the chains of P.

Example

A poset P

The order complex of P

Definition

A finite lattice L has some topological properties, such as shellability, if the order complex of $\bar{L} = L - \{\hat{0}, \hat{1}\}$ has those properties.
The order complex of a poset

Definition

The order complex of a poset P is the simplicial complex whose vertices are the elements of P and whose faces are the chains of P.

Example

A poset P

The order complex of P

Definition

A finite lattice L has some topological properties, such as shellability, if the order complex of $\overline{L} = L - \{\hat{0}, \hat{1}\}$ has those properties.
Two important spaces associated with \mathcal{A}

Definition
- The complement of an arrangement \mathcal{A} in \mathbb{R}^n is
\[\mathcal{M}_\mathcal{A} = \mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H \]
- The singularity link of a central arrangement \mathcal{A} in \mathbb{R}^n is
\[\mathcal{V}^\circ_\mathcal{A} = S^{n-1} \cap \bigcup_{H \in \mathcal{A}} H \]

Fact
By Alexander duality,
\[\tilde{H}^i(\mathcal{M}_\mathcal{A}; \mathbb{F}) = \tilde{H}_{n-2-i}(\mathcal{V}^\circ_\mathcal{A}; \mathbb{F}) \]
Two important spaces associated with \mathcal{A}

Definition

- The **complement** of an arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{M}_{\mathcal{A}} = \mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$$

- The **singularity link** of a central arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{V}_{\mathcal{A}}^\circ = S^{n-1} \cap \bigcup_{H \in \mathcal{A}} H$$

Fact

By Alexander duality,

$$\widetilde{H}^i(\mathcal{M}_{\mathcal{A}}; \mathbb{F}) = \widetilde{H}_{n-2-i}(\mathcal{V}_{\mathcal{A}}^\circ; \mathbb{F})$$
Two important spaces associated with \mathcal{A}

Definition

- The **complement** of an arrangement \mathcal{A} in \mathbb{R}^n is

 $$\mathcal{M}_\mathcal{A} = \mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$$

- The **singularity link** of a central arrangement \mathcal{A} in \mathbb{R}^n is

 $$\mathcal{V}_\mathcal{A}^\circ = S^{n-1} \cap \bigcup_{H \in \mathcal{A}} H$$

Fact

By Alexander duality,

$$\tilde{H}^i(\mathcal{M}_\mathcal{A}; \mathbb{F}) = \tilde{H}_{n-2-i}(\mathcal{V}_\mathcal{A}^\circ; \mathbb{F})$$
Two important spaces associated with \mathcal{A}

Definition

- The **complement** of an arrangement \mathcal{A} in \mathbb{R}^n is
 \[\mathcal{M}_\mathcal{A} = \mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H \]

- The **singularity link** of a central arrangement \mathcal{A} in \mathbb{R}^n is
 \[\mathcal{V}_\mathcal{A} = S^{n-1} \cap \bigcup_{H \in \mathcal{A}} H \]

Fact

By Alexander duality,
\[\tilde{H}^i(\mathcal{M}_\mathcal{A}; \mathbb{F}) = \tilde{H}_{n-2-i}(\mathcal{V}_\mathcal{A}; \mathbb{F}) \]
What is the topology of \mathcal{M}_A and \mathcal{V}_A°?

Theorem (Goresky and Macpherson, 1988)

Let A be a subspace arrangement in \mathbb{R}^n. Then

$$\tilde{\mathcal{H}}^i(\mathcal{M}_A) \cong \bigoplus_{x \in L_A - \{\hat{0}\}} \tilde{\mathcal{H}}_{\text{codim}(x) - 2 - i}(\hat{0}, x).$$

Theorem (Ziegler and Živaljević, 1993)

For every central subspace arrangement A in \mathbb{R}^n,

$$\mathcal{V}_A^\circ \cong \bigvee_{x \in L_A - \{\hat{0}\}} (\Delta(\hat{0}, x) \ast S^{\dim(x) - 1}).$$
What is the topology of $M_{\mathcal{A}}$ and $V_{\mathcal{A}}^\circ$?

Theorem (Goresky and Macpherson, 1988)

Let \mathcal{A} be a subspace arrangement in \mathbb{R}^n. Then

$$\tilde{H}^i(M_{\mathcal{A}}) \cong \bigoplus_{x \in L_{\mathcal{A}} - \{\hat{0}\}} \tilde{H}_{\text{codim}(x)-2-i}(\hat{0}, x).$$

Theorem (Ziegler and Živaljević, 1993)

For every central subspace arrangement \mathcal{A} in \mathbb{R}^n,

$$V_{\mathcal{A}}^\circ \cong \bigvee_{x \in L_{\mathcal{A}} - \{\hat{0}\}} (\Delta(\hat{0}, x) \ast S^{\text{dim}(x)-1}).$$
What is the topology of \mathcal{M}_A and \mathcal{V}^o_A?

Theorem (Goresky and Macpherson, 1988)

Let \mathcal{A} be a subspace arrangement in \mathbb{R}^n. Then

$$\tilde{H}^i(\mathcal{M}_A) \cong \bigoplus_{x \in L_A - \{\hat{0}\}} \tilde{H}_{\text{codim}(x) - 2 - i}(\hat{0}, x).$$

Theorem (Ziegler and Živaljević, 1993)

For every central subspace arrangement \mathcal{A} in \mathbb{R}^n,

$$\mathcal{V}^o_A \cong \bigvee_{x \in L_A - \{\hat{0}\}} (\Delta(\hat{0}, x) \ast S^{\dim(x) - 1}).$$
Outline

1. Hyperplane arrangements
2. Simplicial complexes and subspace arrangements
3. Diagonal subspace arrangements
4. Coordinate subspace arrangements
Correspondence

A simplicial complex \(\Delta \) on \([n]\) \(\iff\) A diagonal arrangement \(A_\Delta \):

- Collection of diagonal subspaces \(\{x_{i_1} = \cdots = x_{i_k}\} \) of \(\mathbb{R}^n \)
- For all \(\{i_1, \ldots, i_k\} \) complementary to facets of \(\Delta \)

Example

- \(\Delta \)
- \(A_\Delta \)
Correspondence

A simplicial complex Δ on $[n]$ isomorphic to Δ via

$$\begin{align*}
\Delta & \iff \\
\{x_{i_1} = \cdots = x_{i_k}\} & \text{diagonal subspaces of } \mathbb{R}^n, \\
\text{for all } \{i_1, \ldots, i_k\} & \text{complementary to facets of } \Delta
\end{align*}$$

Example

\[\Delta \]
A simplicial complex \(\Delta \) on \([n]\) \iff\ A diagonal arrangement \(\mathcal{A}_\Delta \): collection of diagonal subspaces \(\{x_{i_1} = \cdots = x_{i_k}\} \) of \(\mathbb{R}^n \) for all \(\{i_1, \ldots, i_k\} \) complementary to facets of \(\Delta \)

Example

\(\Delta \)

\(F_1 \quad F_2 \quad F_3 \quad F_4 \)

\(A_\Delta \)
Simplicial complexes and diagonal arrangements

Correspondence

A simplicial complex Δ on $[n] \iff$

A diagonal arrangement \mathcal{A}_Δ: collection of diagonal subspaces

$$\{x_{i_1} = \cdots = x_{i_k}\} \text{ of } \mathbb{R}^n$$

for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ

Example

$$\Delta$$

\iff

$$\{x_4 = x_5\}$$

$$\{x_1 = x_5\}$$

$$\{x_1 = x_2 = x_4\}$$

$$\{x_1 = x_2 = x_3\}$$
A simplicial complex Δ on $[n]$ is \(\iff\) a diagonal arrangement \mathcal{A}_Δ: collection of diagonal subspaces $\{x_{i_1} = \cdots = x_{i_k}\}$ of \mathbb{R}^n for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ.

Example

$$\Delta$$

\[\begin{align*}
\{x_4 = x_5\} & \iff \{x_1 = x_5\} \\
\{x_1 = x_2 = x_4\} & \iff \{x_1 = x_2 = x_3\}
\end{align*}\]
Correspondence

A simplicial complex \(\Delta \) on \([n]\) \iff\ A diagonal arrangement \(\mathcal{A}_\Delta \): collection of diagonal subspaces \(\{x_{i_1} = \cdots = x_{i_k}\} \) of \(\mathbb{R}^n \) for all \(\{i_1, \ldots, i_k\} \) complementary to facets of \(\Delta \)

Example

\(\Delta \) \iff\ \{x_4 = x_5\} \quad \{x_1 = x_5\} \quad \{x_1 = x_2 = x_4\} \quad \{x_1 = x_2 = x_3\} \\
\mathcal{A}_\Delta \quad F_1 \quad F_2 \quad F_3 \quad F_4
Correspondence

A simplicial complex \(\Delta \) on \([n]\) ⇔ A diagonal arrangement \(\mathcal{A}_\Delta \): collection of diagonal subspaces \(\{x_{i_1} = \cdots = x_{i_k}\} \) of \(\mathbb{R}^n \) for all \(\{i_1, \ldots, i_k\} \) complementary to facets of \(\Delta \)

Example

\(\Delta \)

\(\mathcal{A}_\Delta \)

\(\{x_4 = x_5\} \)
\(\{x_1 = x_5\} \)
\(\{x_1 = x_2 = x_4\} \)
\(\{x_1 = x_2 = x_3\} \)
Example

The **Braid arrangement** $\mathcal{B}_n = \bigcup_{i<j} \{x_i = x_j\}$

\uparrow

$\Delta_{n,n-2} = \{\sigma \subset [n] : |\sigma| \leq n - 2\}$

Example

The **k-equal arrangement** $\mathcal{A}_{n,k} = \bigcup_{i_1 < \cdots < i_k} \{x_{i_1} = \cdots = x_{i_k}\}$

\uparrow

$\Delta_{n,n-k} = \{\sigma \subset [n] : |\sigma| \leq n - k\}$
Example

The Braid arrangement \(B_n = \bigcup_{i<j} \{ x_i = x_j \} \)

\[\Delta_{n,n-2} = \{ \sigma \subset [n] : |\sigma| \leq n - 2 \} \]

Example

The \(k \)-equal arrangement \(A_{n,k} = \bigcup_{i < \cdots < i_k} \{ x_{i_1} = \cdots = x_{i_k} \} \)

\[\Delta_{n,n-k} = \{ \sigma \subset [n] : |\sigma| \leq n - k \} \]
Example

The Braid arrangement \(\mathcal{B}_n = \bigcup_{i<j} \{x_i = x_j\} \)

\[\Delta_{n,n-2} = \{\sigma \subseteq [n] : |\sigma| \leq n-2\} \]

Example

The \(k \)-equal arrangement \(\mathcal{A}_{n,k} = \bigcup_{i_1<\ldots<i_k} \{x_{i_1} = \ldots = x_{i_k}\} \)

\[\Delta_{n,n-k} = \{\sigma \subseteq [n] : |\sigma| \leq n-k\} \]
Example

The Braid arrangement $\mathcal{B}_n = \bigcup_{i<j} \{x_i = x_j\}$

$\Delta_{n,n-2} = \{\sigma \subset [n] : |\sigma| \leq n - 2\}$

Example

The k-equal arrangement $\mathcal{A}_{n,k} = \bigcup_{i_1<\cdots<i_k} \{x_{i_1} = \cdots = x_{i_k}\}$

$\Delta_{n,n-k} = \{\sigma \subset [n] : |\sigma| \leq n - k\}$
What is a general sufficient condition for the intersection lattice $L_{\mathcal{A}}$ of a diagonal arrangement \mathcal{A} to be well-behaved?

Theorem (Björner and Welker, 1995)

The order complex of the intersection lattice $L_{\mathcal{A}_{n,k}}$ for the k-equal arrangement $\mathcal{A}_{n,k}$ is shellable.

$\mathcal{A}_{n,k} = \mathcal{A}_{\Delta_{n,n-k}}$ and $\Delta_{n,n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on $[n]$ that satisfies some conditions. Then the intersection lattice for \mathcal{A}_{Δ} is shellable.

Δ in Kozlov’s theorem is shellable.
What is a general sufficient condition for the intersection lattice $L_{\mathcal{A}}$ of a diagonal arrangement \mathcal{A} to be well-behaved?

Theorem (Björner and Welker, 1995)

The order complex of the intersection lattice $L_{\mathcal{A}_{n,k}}$ for the k-equal arrangement $\mathcal{A}_{n,k}$ is shellable.

$\mathcal{A}_{n,k} = \mathcal{A}_{\Delta_{n,n-k}}$ and $\Delta_{n,n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on $[n]$ that satisfies some conditions. Then the intersection lattice for \mathcal{A}_Δ is shellable.

Δ in Kozlov’s theorem is shellable.
What is a general sufficient condition for the intersection lattice L_A of a diagonal arrangement A to be well-behaved?

Theorem (Björner and Welker, 1995)

The order complex of the intersection lattice $L_{A_{n,k}}$ for the k-equal arrangement $A_{n,k}$ is shellable.

$A_{n,k} = A_{\Delta_{n,n-k}}$ and $\Delta_{n,n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on $[n]$ that satisfies some conditions. Then the intersection lattice for A_Δ is shellable.

Δ in Kozlov’s theorem is shellable.
What is a general sufficient condition for the intersection lattice $L_{\mathcal{A}}$ of a diagonal arrangement \mathcal{A} to be well-behaved?

Theorem (Björner and Welker, 1995)

The order complex of the intersection lattice $L_{\mathcal{A}_{n,k}}$ for the k-equal arrangement $\mathcal{A}_{n,k}$ is shellable.

\[\mathcal{A}_{n,k} = \mathcal{A}_{\Delta_{n,n-k}} \text{ and } \Delta_{n,n-k} \text{ is shellable.} \]

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on $[n]$ that satisfies some conditions. Then the intersection lattice for \mathcal{A}_{Δ} is shellable.

Δ in Kozlov’s theorem is shellable.
What is a general sufficient condition for the intersection lattice L_A of a diagonal arrangement A to be well-behaved?

Theorem (Björner and Welker, 1995)

The order complex of the intersection lattice $L_{A_{n,k}}$ for the k-equal arrangement $A_{n,k}$ is shellable.

$A_{n,k} = A_{\Delta_{n,n-k}}$ and $\Delta_{n,n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on $[n]$ that satisfies some conditions. Then the intersection lattice for A_{Δ} is shellable.

Δ in Kozlov’s theorem is shellable.
Homotopy type of the singularity link

Theorem (K.)

Let Δ be a shellable simplicial complex with $\dim \Delta \leq n - 3$. Then the order complex of the intersection lattice L_Δ of A_Δ is homotopy equivalent to a wedge of spheres.

Corollary (K.)

Let Δ be a shellable simplicial complex with $\dim \Delta \leq n - 3$. The singularity link of A_Δ has the homotopy type of a wedge of spheres.
Theorem (K.)

Let Δ be a shellable simplicial complex with $\dim \Delta \leq n - 3$. Then the order complex of the intersection lattice L_Δ of A_Δ is homotopy equivalent to a wedge of spheres.

Corollary (K.)

Let Δ be a shellable simplicial complex with $\dim \Delta \leq n - 3$. The singularity link of A_Δ has the homotopy type of a wedge of spheres.
A shellable complex Δ

The intersection lattice L_Δ of \mathcal{A}_Δ
Example

A shellable complex Δ

The intersection lattice L_Δ of A_Δ
Example

A shellable complex \(\Delta \)

The intersection lattice \(L_\Delta \) of \(\mathcal{A}_\Delta \)

The order complex of \(\bar{L}_\Delta \)

\[\{(12345, F_4)\} \quad \{(45, F_1), (123, F_4)\} \]
Example

A shellable complex Δ

$\{(12345, F_4)\}$
$\{(45, F_1), (123, F_4)\}$

Shelling-trapped decompositions of $[5]$

The intersection lattice L_Δ of \mathcal{A}_Δ

The order complex of $\overline{L_\Delta}$
Example

A shellable complex Δ

\[
\{(12345, F_4)\} \cup \{(45, F_1), (123, F_4)\}
\]

Shelling-trapped decompositions of $[5]$

The intersection lattice L_Δ of A_Δ

The order complex of \overline{L}_Δ
Example

A shellable complex Δ

\[
\{(12345, F_4)\}
\]
\[
\{(45, F_1), (123, F_4)\}
\]

Shelling-trapped decompositions of $[5]$

The intersection lattice L_Δ of \mathcal{A}_Δ

The order complex of $\overline{L_\Delta}$
L_Δ is not shellable in general

Example

Let Δ be a shellable complex with a shelling $123456, 127, 137, 237, 458, 468, 568$.
L_{Δ} is not shellable in general

Example

Let Δ be a shellable complex with a shelling 123456, 127, 137, 237, 458, 468, 568.
\triangle is not shellable in general

Example

Let \triangle be a shellable complex with a shelling $123456, 127, 137, 237, 458, 468, 568$.

\[
\begin{array}{c}
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \\
12345678 \end{array}
\]
L_Δ is not shellable in general

Example

Let Δ be a shellable complex with a shelling
123456, 127, 137, 237, 458, 468, 568.
Application in group cohomology

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the n-th homotopy group being trivial and the n-th homotopy group isomorphic to π.

Fact

If a CW complex X is a $K(\pi, 1)$ space, then

$$\text{Tor}_{n}^{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}) = H_{n}(X; \mathbb{Z}) \text{ and } \text{Ext}_{\mathbb{Z}}^{n}(\mathbb{Z}, \mathbb{Z}) = H^{n}(X; \mathbb{Z}).$$

Theorem (Fadell and Neuwirth, 1962)

Let B_{n} be the braid arrangement in \mathbb{C}^{n}. Then $M_{B_{n}}$ is a $K(\pi, 1)$ space.

Theorem (Khovanov, 1996)

Let $A_{n,3}$ be the 3-equal arrangement in \mathbb{R}^{n}. Then $M_{A_{n,3}}$ is a $K(\pi, 1)$ space.
Application in group cohomology

Definition
An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the n-th homotopy group being trivial and the n-th homotopy group isomorphic to π.

Fact
If a CW complex X is a $K(\pi, 1)$ space, then

$$\text{Tor}^\mathbb{Z}_n(\mathbb{Z}, \mathbb{Z}) = H_n(X; \mathbb{Z}) \text{ and } \text{Ext}^n_{\mathbb{Z}\pi}(\mathbb{Z}, \mathbb{Z}) = H^n(X; \mathbb{Z}).$$

Theorem (Fadell and Neuwirth, 1962)
Let B_n be the braid arrangement in \mathbb{C}^n. Then M_{B_n} is a $K(\pi, 1)$ space.

Theorem (Khovanov, 1996)
Let $A_{n,3}$ be the 3-equal arrangement in \mathbb{R}^n. Then $M_{A_{n,3}}$ is a $K(\pi, 1)$ space.
Application in group cohomology

Definition
An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the n-th homotopy group being trivial and the n-th homotopy group isomorphic to π.

Fact
If a CW complex X is a $K(\pi, 1)$ space, then

$$\text{Tor}^\mathbb{Z}_n(\mathbb{Z}, \mathbb{Z}) = H_n(X; \mathbb{Z}) \quad \text{and} \quad \text{Ext}^n_{\mathbb{Z} \pi}(\mathbb{Z}, \mathbb{Z}) = H^n(X; \mathbb{Z}).$$

Theorem (Fadell and Neuwirth, 1962)
Let \mathcal{B}_n be the braid arrangement in \mathbb{C}^n. Then $\mathcal{M}_{\mathcal{B}_n}$ is a $K(\pi, 1)$ space.

Theorem (Khovanov, 1996)
Let $\mathcal{A}_{n,3}$ be the 3-equal arrangement in \mathbb{R}^n. Then $\mathcal{M}_{\mathcal{A}_{n,3}}$ is a $K(\pi, 1)$ space.
Definition

An **Eilenberg-MacLane space** (or a \(K(\pi, n) \) space) is a connected cell complex with all homotopy groups except the \(n \)-th homotopy group being trivial and the \(n \)-th homotopy group isomorphic to \(\pi \).

Fact

If a CW complex \(X \) is a \(K(\pi, 1) \) space, then

\[
\text{Tor}_{\mathbb{Z}}^{\mathbb{Z}\pi}(\mathbb{Z}, \mathbb{Z}) = H_n(X; \mathbb{Z}) \quad \text{and} \quad \text{Ext}_{\mathbb{Z}\pi}^{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}) = H^n(X; \mathbb{Z}).
\]

Theorem (Fadell and Neuwirth, 1962)

Let \(B_n \) be the braid arrangement in \(\mathbb{C}^n \). Then \(\mathcal{M}_{B_n} \) is a \(K(\pi, 1) \) space.

Theorem (Khovanov, 1996)

Let \(A_{n,3} \) be the 3-equal arrangement in \(\mathbb{R}^n \). Then \(\mathcal{M}_{A_{n,3}} \) is a \(K(\pi, 1) \) space.
Application in group cohomology

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the n-th homotopy group being trivial and the n-th homotopy group isomorphic to π.

Fact

If a CW complex X is a $K(\pi, 1)$ space, then

$$\text{Tor}_n^{\mathbb{Z}\pi}(\mathbb{Z}, \mathbb{Z}) = H_n(X; \mathbb{Z}) \text{ and } \text{Ext}_n^{\mathbb{Z}\pi}(\mathbb{Z}, \mathbb{Z}) = H^n(X; \mathbb{Z}).$$

Theorem (Fadell and Neuwirth, 1962)

Let B_n be the braid arrangement in \mathbb{C}^n. Then M_{B_n} is a $K(\pi, 1)$ space.

Theorem (Khovanov, 1996)

Let $A_{n,3}$ be the 3-equal arrangement in \mathbb{R}^n. Then $M_{A_{n,3}}$ is a $K(\pi, 1)$ space.
Diagonal arrangement \mathcal{A} such that $\mathcal{M}_\mathcal{A}$ is $K(\pi, 1)$

Theorem (Davis, Januszkiewicz and Scott, 1998)

Let \mathcal{H} be a simplicial real hyperplane arrangement in \mathbb{R}^n. Let \mathcal{A} be any arrangement of codimension-2 intersection subspaces in \mathcal{H} which intersects every chamber in a codimension-2 subcomplex. Then $\mathcal{M}_\mathcal{A}$ is $K(\pi, 1)$.

Proposition

Let \mathcal{A} be a subarrangement of 3-equal arrangement of \mathbb{R}^n so that

$$\mathcal{A} = \left\{ \{x_i = x_j = x_k\} \mid \{i, j, k\} \in T_\mathcal{A} \right\},$$

for some collection $T_\mathcal{A}$ of 3-element subsets of $[n]$. Then \mathcal{A} satisfies the hypothesis of DJS’s theorem (and hence $\mathcal{M}_\mathcal{A}$ is $K(\pi, 1)$) if and only if every permutation ω in \mathfrak{S}_n has at least one triple in $T_\mathcal{A}$ consecutive.
Diagonal arrangement A such that M_A is $K(\pi, 1)$

Theorem (Davis, Januszkiewicz and Scott, 1998)

Let H be a simplicial real hyperplane arrangement in \mathbb{R}^n. Let A be any arrangement of codimension-2 intersection subspaces in H which intersects every chamber in a codimension-2 subcomplex. Then M_A is $K(\pi, 1)$.

Proposition

Let A be a subarrangement of 3-equal arrangement of \mathbb{R}^n so that

$$A = \left\{ \{x_i = x_j = x_k\} \mid \{i, j, k\} \in T_A \right\},$$

for some collection T_A of 3-element subsets of $[n]$. Then A satisfies the hypothesis of DJS’s theorem (and hence M_A is $K(\pi, 1)$) if and only if every permutation ω in S_n has at least one triple in T_A consecutive.
Diagonal arrangement \mathcal{A} such that $\mathcal{M}_\mathcal{A}$ is $K(\pi, 1)$

Theorem (Davis, Januszkiewicz and Scott, 1998)

Let \mathcal{H} be a simplicial real hyperplane arrangement in \mathbb{R}^n. Let \mathcal{A} be any arrangement of codimension-2 intersection subspaces in \mathcal{H} which intersects every chamber in a codimension-2 subcomplex. Then $\mathcal{M}_\mathcal{A}$ is $K(\pi, 1)$.

Proposition

Let \mathcal{A} be a subarrangement of 3-equal arrangement of \mathbb{R}^n so that

$$\mathcal{A} = \left\{ \{x_i = x_j = x_k\} \mid \{i, j, k\} \in T_\mathcal{A} \right\},$$

for some collection $T_\mathcal{A}$ of 3-element subsets of $[n]$. Then \mathcal{A} satisfies the hypothesis of DJS’s theorem (and hence $\mathcal{M}_\mathcal{A}$ is $K(\pi, 1)$) if and only if every permutation ω in \mathfrak{S}_n has at least one triple in $T_\mathcal{A}$ consecutive.
DJS matroids

The matroid complexes $\Delta = \mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid M on $[n]$ is **DJS** if every permutation ω in \mathfrak{S}_n has at least one triple in $\mathcal{B}(M)$ consecutive.

Proposition (K.)

Rank 3 Matroids without parallel elements are DJS. In particular, rank 3 simple matroids are DJS.

Proposition (K.)

Let M be a rank 3 matroid on the ground set $[n]$ with no circuits of size 3. Let P_1, \ldots, P_k be distinct parallel classes which have more than one element and let N be the set of all elements which are not parallel with anything else. Then, M is DJS if and only if
\[
\left\lfloor \frac{|P_1|}{2} \right\rfloor + \cdots + \left\lfloor \frac{|P_k|}{2} \right\rfloor - k < |N| - 2.
\]
DJS matroids

The matroid complexes $\Delta = \mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid M on $[n]$ is **DJS** if every permutation ω in S_n has at least one triple in $\mathcal{B}(M)$ consecutive.

Proposition (K.)

Rank 3 Matroids without parallel elements are DJS.

In particular, rank 3 simple matroids are DJS.

Proposition (K.)

Let M be a rank 3 matroid on the ground set $[n]$ with no circuits of size 3. Let P_1, \ldots, P_k be distinct parallel classes which have more than one element and let N be the set of all elements which are not parallel with anything else. Then, M is DJS if and only if

$$\left\lfloor \frac{|P_1|}{2} \right\rfloor + \cdots + \left\lfloor \frac{|P_k|}{2} \right\rfloor - k < |N| - 2.$$
DJS matroids

The matroid complexes $\Delta = \mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid M on $[n]$ is **DJS** if every permutation ω in S_n has at least one triple in $\mathcal{B}(M)$ consecutive.

Proposition (K.)

Rank 3 Matroids without parallel elements are DJS. In particular, rank 3 simple matroids are DJS.

Proposition (K.)

Let M be a rank 3 matroid on the ground set $[n]$ with no circuits of size 3. Let P_1, \ldots, P_k be distinct parallel classes which have more than one element and let N be the set of all elements which are not parallel with anything else. Then, M is DJS if and only if

$$\left\lfloor \frac{|P_1|}{2} \right\rfloor + \cdots + \left\lfloor \frac{|P_k|}{2} \right\rfloor - k < |N| - 2.$$
The matroid complexes $\Delta = \mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid M on $[n]$ is **DJS** if every permutation ω in S_n has at least one triple in $\mathcal{B}(M)$ consecutive.

Proposition (K.)

Rank 3 Matroids without parallel elements are DJS.

In particular, rank 3 simple matroids are DJS.

Proposition (K.)

Let M be a rank 3 matroid on the ground set $[n]$ with no circuits of size 3. Let P_1, \ldots, P_k be distinct parallel classes which have more than one element and let N be the set of all elements which are not parallel with anything else. Then, M is DJS if and only if

$$\left\lfloor \frac{|P_1|}{2} \right\rfloor + \cdots + \left\lfloor \frac{|P_k|}{2} \right\rfloor - k < |N| - 2.$$
DJS matroids

The matroid complexes $\Delta = \mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid M on $[n]$ is **DJS** if every permutation ω in \mathfrak{S}_n has at least one triple in $\mathcal{B}(M)$ consecutive.

Proposition (K.)

Rank 3 Matroids without parallel elements are DJS. In particular, rank 3 simple matroids are DJS.

Proposition (K.)

Let M be a rank 3 matroid on the ground set $[n]$ with no circuits of size 3. Let P_1, \ldots, P_k be distinct parallel classes which have more than one element and let N be the set of all elements which are not parallel with anything else. Then, M is DJS if and only if

$$\left\lfloor \frac{|P_1|}{2} \right\rfloor + \cdots + \left\lfloor \frac{|P_k|}{2} \right\rfloor - k < |N| - 2.$$
1. Hyperplane arrangements
2. Simplicial complexes and subspace arrangements
3. Diagonal subspace arrangements
4. Coordinate subspace arrangements
Correspondence

A simplicial complex Δ on $[n] \iff$ A coordinate arrangement \mathcal{A}_Δ:

- collection of coordinate subspaces
- $\{x_{i_1} = \cdots = x_{i_k} = 0\}$ of \mathbb{R}^n
- for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ

Example

- F_1
- F_2
- F_3
- F_4
Simplicial complexes and Coordinate arrangements

Correspondence

A simplicial complex \(\Delta \) on \([n]\) \iff

A coordinate arrangement \(A_\Delta \): collection of coordinate subspaces \(\{x_{i_1} = \cdots = x_{i_k} = 0\} \) of \(\mathbb{R}^n \) for all \(\{i_1, \ldots, i_k\} \) complementary to facets of \(\Delta \)

Example
Correspondence

A simplicial complex Δ on $[n]$ \iff A coordinate arrangement A_Δ: collection of coordinate subspaces $\{x_{i_1} = \cdots = x_{i_k} = 0\}$ of \mathbb{R}^n for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ

Example

- Δ
- A_Δ
Correspondence

A simplicial complex Δ on $[n] \iff$ A coordinate arrangement \mathcal{A}_Δ: collection of coordinate subspaces

\[
\{x_{i_1} = \cdots = x_{i_k} = 0\}
\]

of \mathbb{R}^n for all \(\{i_1, \ldots, i_k\}\) complementary to facets of Δ

Example

\[
\begin{align*}
\{x_4 = x_5 = 0\} & \quad \Rightarrow \quad F_1 \\
\{x_1 = x_6 = 0\} & \quad \Rightarrow \quad F_2 \\
\{x_1 = x_2 = x_4 = 0\} & \quad \Rightarrow \quad F_3 \\
\{x_1 = x_2 = x_3 = 0\} & \quad \Rightarrow \quad F_4
\end{align*}
\]
A simplicial complex \(\Delta \) on \([n]\) \iff \text{A coordinate arrangement} \(\mathcal{A}_\Delta \) :

- collection of \text{coordinate} subspaces \(\{x_{i_1} = \cdots = x_{i_k} = 0\} \) of \(\mathbb{R}^n \)
- for all \(\{i_1, \ldots, i_k\} \) \text{complementary to facets of} \(\Delta \)

\[\begin{align*}
\{x_4 = x_5 = 0\} & \iff F_1 \\
\{x_1 = x_5 = 0\} & \iff F_2 \\
\{x_1 = x_2 = x_4 = 0\} & \iff F_3 \\
\{x_1 = x_2 = x_3 = 0\} & \iff F_4
\end{align*}\]
Lemma

Let Δ be a simplicial complex and L_{Δ} be the intersection lattice for its corresponding coordinate arrangement. Then the subspace $x_{i_1} = \cdots = x_{i_k} = 0$ lies in L_{Δ} if and only if $[n] - \{i_1, \ldots, i_k\}$ is an intersection of facets of Δ.

Proposition

Let Δ be a simplicial complex on $[n]$ and σ be the intersection of all facets of Δ. Then the intersection lattice L_{Δ} is homotopy equivalent to $\text{link}_{\Delta} \sigma$.
Lemma

Let Δ be a simplicial complex and L_Δ be the intersection lattice for its corresponding coordinate arrangement. Then the subspace $x_{i_1} = \cdots = x_{i_k} = 0$ lies in L_Δ if and only if $[n] - \{i_1, \ldots, i_k\}$ is an intersection of facets of Δ.

Proposition

Let Δ be a simplicial complex on $[n]$ and σ be the intersection of all facets of Δ. Then the intersection lattice L_Δ is homotopy equivalent to $\text{link}_\Delta \sigma$.
A simplicial complex Δ

Intersection lattice L_Δ

Barycentric subdivision of Δ

The order complex of $\overline{L_\Delta}$
A simplicial complex Δ

Intersection lattice L_Δ

Barycentric subdivision of Δ

The order complex of $\overline{L_\Delta}$
A simplicial complex Δ

Barycentric subdivision of Δ

Intersection lattice L_Δ

The order complex of $\overline{L_\Delta}$
Example

A simplicial complex Δ

Intersection lattice L_Δ

Barycentric subdivision of Δ

The order complex of $\overline{L_\Delta}$
Example

A simplicial complex Δ

Barycentric subdivision of Δ

Intersection lattice L_{Δ}

The order complex of $\overline{L_{\Delta}}$
A simplicial complex Δ

Barycentric subdivision of Δ

Intersection lattice L_Δ

The order complex of $\overline{L_\Delta}$
Proposition

If Δ is a shellable simplicial complex, then the singularity link of A_Δ is homotopy equivalent to

$$\bigvee_{i=1}^{q} \left(\bigvee_{\dim F_i \leq \dim F_i} \bigvee_{2|\mathcal{R}(F_i)| \text{ copies}} S_{\dim F_i} \right),$$

where $\mathcal{R}(F_i)$ is the unique minimal new face of F_i.

Conjecture (Welker)

If Δ is a shellable simplicial complex, then the complement of A_Δ is homotopy equivalent to

$$\bigvee_{i=1}^{q} \left(\bigvee_{n-2-\dim F_i \leq \dim F_i} \bigvee_{2|\mathcal{R}(F_i)| \text{ copies}} S_{n-2-\dim F_i} \right).$$
Proposition

If Δ is a shellable simplicial complex, then the singularity link of A_{Δ} is homotopy equivalent to

$$\bigvee_{i=1}^{q} \left(S^{\dim F_i} \vee \ldots \vee S^{\dim F_i} \right),$$

where $R(F_i)$ is the unique minimal new face of F_i.

Conjecture (Welker)

If Δ is a shellable simplicial complex, then the complement of A_{Δ} is homotopy equivalent to

$$\bigvee_{i=1}^{q} \left(S^{n-2-\dim F_i} \vee \ldots \vee S^{n-2-\dim F_i} \right),$$

where $R(F_i)$ is the unique minimal new face of F_i.
Proposition

If Δ is a shellable simplicial complex, then the singularity link of A_{Δ} is homotopy equivalent to

$$\bigvee_{i=1}^{q} \left(\bigvee_{\dim F_i} S_{\dim F_i} \vee \ldots \vee S_{\dim F_i} \right),$$

where $\mathcal{R}(F_i)$ is the unique minimal new face of F_i.

Conjecture (Welker)

If Δ is a shellable simplicial complex, then the complement of A_{Δ} is homotopy equivalent to

$$\bigvee_{i=1}^{q} \left(\bigvee_{n-2-\dim F_i} S_{n-2-\dim F_i} \vee \ldots \vee S_{n-2-\dim F_i} \right),$$

where $\mathcal{R}(F_i)$ is the unique minimal new face of F_i.
Proposition

If a simplicial complex \(\Delta \) is shellable, then the multiplication on the cohomology algebra of the complement of \(A_\Delta \) is trivial.

Sketch of proof

- The cohomology algebra of the complement of \(A_\Delta \) is isomorphic to Tor algebra of the Stanley-Reisner ring \(k[\Delta] \).
- If a simplicial complex \(\Delta \) is shellable, then the corresponding Stanley-Reisner ring \(k[\Delta] \) is Golod.
- A monomial ring is Golod if and only if the multiplication on its Tor algebra is trivial. [Berglund and Jöllenbeck, 2007]

Note

If the complement of \(A_\Delta \) is homotopy equivalent to a wedge of spheres, then the multiplication on its cohomology algebra is trivial.
Proposition

If a simplicial complex Δ is shellable, then the multiplication on the cohomology algebra of the complement of A_Δ is trivial.

Sketch of proof

- The cohomology algebra of the complement of A_Δ is isomorphic to Tor algebra of the Stanley-Reisner ring $k[\Delta]$.
- If a simplicial complex Δ is shellable, then the corresponding Stanley-Reisner ring $k[\Delta]$ is Golod.
- A monomial ring is Golod if and only if the multiplication on its Tor algebra is trivial. [Berglund and Jöllenbeck, 2007]

Note

If the complement of A_Δ is homotopy equivalent to a wedge of spheres, then the multiplication on its cohomology algebra is trivial.
Proposition

If a simplicial complex Δ is shellable, then the multiplication on the cohomology algebra of the complement of A_Δ is trivial.

Sketch of proof

- The cohomology algebra of the complement of A_Δ is isomorphic to Tor algebra of the Stanley-Reisner ring $k[\Delta]$.
- If a simplicial complex Δ is shellable, then the corresponding Stanley-Reisner ring $k[\Delta]$ is Golod.
- A monomial ring is Golod if and only if the multiplication on its Tor algebra is trivial. [Berglund and Jöllenbeck, 2007]

Note

If the complement of A_Δ is homotopy equivalent to a wedge of spheres, then the multiplication on its cohomology algebra is trivial.
Proposition

If a simplicial complex Δ is shellable, then the multiplication on the cohomology algebra of the complement of \mathcal{A}_Δ is trivial.

Sketch of proof

- The cohomology algebra of the complement of \mathcal{A}_Δ is isomorphic to Tor algebra of the Stanley-Reisner ring $k[\Delta]$.
- If a simplicial complex Δ is shellable, then the corresponding Stanley-Reisner ring $k[\Delta]$ is Golod.
- A monomial ring is Golod if and only if the multiplication on its Tor algebra is trivial. [Berglund and Jöllenbeck, 2007]

Note

If the complement of \mathcal{A}_Δ is homotopy equivalent to a wedge of spheres, then the multiplication on its cohomology algebra is trivial.
Cohomology algebra of the complement of \(A_\Delta \)

Proposition

If a simplicial complex \(\Delta \) is shellable, then the multiplication on the cohomology algebra of the complement of \(A_\Delta \) is trivial.

Sketch of proof

- The cohomology algebra of the complement of \(A_\Delta \) is isomorphic to Tor algebra of the Stanley-Reisner ring \(k[\Delta] \).
- If a simplicial complex \(\Delta \) is shellable, then the corresponding Stanley-Reisner ring \(k[\Delta] \) is Golod.
- A monomial ring is Golod if and only if the multiplication on its Tor algebra is trivial. [Berglund and Jöllenbeck, 2007]

Note

If the complement of \(A_\Delta \) is homotopy equivalent to a wedge of spheres, then the multiplication on its cohomology algebra is trivial.
A simplicial complex Δ on $[n]$ is **shifted** if, for any face of Δ, replacing any vertex i by a vertex $j(< i)$ gives another face in Δ.

Theorem (Björner and Wachs, 1996)

Shifted complexes are shellable.

Theorem (Grbić & Theriault, 2007 / Welker)

If Δ is a shifted simplicial complex, then the complement of A_Δ is homotopy equivalent to a wedge of spheres.
Known cases - shifted complexes

Definition
A simplicial complex Δ on $[n]$ is shifted if, for any face of Δ, replacing any vertex i by a vertex $j(<i)$ gives another face in Δ.

Theorem (Björner and Wachs, 1996)
Shifted complexes are shellable.

Theorem (Grbić & Theriault, 2007 / Welker)
If Δ is a shifted simplicial complex, then the complement of A_Δ is homotopy equivalent to a wedge of spheres.
Known cases - shifted complexes

Definition
A simplicial complex Δ on $[n]$ is **shifted** if, for any face of Δ, replacing any vertex i by a vertex $j(<i)$ gives another face in Δ.

Theorem (Björner and Wachs, 1996)

Shifted complexes are shellable.

Theorem (Grbić & Theriault, 2007 / Welker)

If Δ is a shifted simplicial complex, then the complement of A_Δ is homotopy equivalent to a wedge of spheres.
Proposition (K.)

If Δ is a pure and shellable simplicial complex on $[n]$ with $d := \dim \Delta \leq n - 3$, then the complement of \mathcal{A}_Δ is homotopy equivalent to

$$S^{n-d-2} \vee \ldots \vee S^{n-d-2} \quad \sum_{i=1}^{q} 2^{\left|\mathcal{R}(F_i)\right|} \text{ copies}.$$

Sketch of proof

- $\Gamma_\Delta :=$ the faces of n-cube $C^n = [-1, 1]^n$ disjoint to $\cup \mathcal{A}_\Delta$
- $\Gamma_\Delta \simeq \mathcal{M}_{\mathcal{A}_\Delta}$
- $H_i(\mathcal{M}_{\mathcal{A}_\Delta}; \mathbb{Z}) = \begin{cases} \sum_{i=1}^{q} 2^{\left|\mathcal{R}(F_i)\right|} & i = n - d - 2 \\ 0 & \text{otherwise} \end{cases}$
Proposition (K.)

If Δ is a pure and shellable simplicial complex on $[n]$ with $d := \dim \Delta \leq n - 3$, then the complement of \mathcal{A}_Δ is homotopy equivalent to

$$\bigvee_{\sum_{i=1}^{q} 2^{|\mathcal{R}(F_i)|}} \sum_{i=1}^{q} 2^{|\mathcal{R}(F_i)|} \text{copies}$$

Sketch of proof

- $\Gamma_\Delta :=$ the faces of n-cube $C^n = [-1, 1]^n$ disjoint to $\cup \mathcal{A}_\Delta$
- $\Gamma_\Delta \simeq \mathcal{M}_{\mathcal{A}_\Delta}$
- $H_i(\mathcal{M}_{\mathcal{A}_\Delta}; \mathbb{Z}) = \begin{cases} \mathbb{Z} \sum_{i=1}^{q} 2^{|\mathcal{R}(F_i)|} & i = n - d - 2 \\ 0 & \text{otherwise} \end{cases}$
If Δ is a pure and shellable simplicial complex on $[n]$ with $d := \dim \Delta \leq n - 3$, then the complement of A_Δ is homotopy equivalent to
\[
\bigvee_{q=1}^{\sum_i 2^{|R(F_i)|}} S^{n-d-2} \vee \ldots \vee S^{n-d-2}.
\]

Sketch of proof

1. $\Gamma_\Delta :=$ the faces of n-cube $C^n = [-1, 1]^n$ disjoint to $\bigcup A_\Delta$
2. $\Gamma_\Delta \simeq M_{A_\Delta}$
3. $H_i(M_{A_\Delta} ; \mathbb{Z}) = \begin{cases} \mathbb{Z} \sum_{i=1}^{q} 2^{|R(F_i)|} & i = n - d - 2 \\ 0 & \text{otherwise} \end{cases}$
Known cases - pure and shellable complexes

Proposition (K.)

If Δ is a pure and shellable simplicial complex on $[n]$ with $d := \dim \Delta \leq n - 3$, then the complement of \mathcal{A}_Δ is homotopy equivalent to

$$\bigvee^{\sum_{i=1}^{q} 2^{|\mathcal{R}(F_i)|}} \mathbb{S}^{n-d-2} \vee \ldots \vee \mathbb{S}^{n-d-2}.$$

Sketch of proof

- $\Gamma_\Delta :=$ the faces of n-cube $C^n = [-1, 1]^n$ disjoint to $\cup \mathcal{A}_\Delta$
- $\Gamma_\Delta \simeq \mathcal{M}_{\mathcal{A}_\Delta}$.
- $H_i(\mathcal{M}_{\mathcal{A}_\Delta}; \mathbb{Z}) = \begin{cases} \mathbb{Z} \sum_{i=1}^{q} 2^{|\mathcal{R}(F_i)|} & i = n - d - 2 \\ 0 & \text{otherwise} \end{cases}$
When a complex is not shellable

Example

Nonshellable complex Δ Coordinate arrangement \mathcal{A}_Δ

- The complement of \mathcal{A}_Δ is

$$\mathbb{R}^4 - \{x_1 = x_2 = 0\} \cup \{x_3 = x_4 = 0\}$$

which is homotopy equivalent to a torus.

- The singularity link of \mathcal{A}_Δ is homotopy equivalent to a wedge of spheres.
When a complex is not shellable

Example

Nonshellable complex Δ

- The complement of \mathcal{A}_Δ is

$$\mathbb{R}^4 - \{x_1 = x_2 = 0\} \cup \{x_3 = x_4 = 0\}$$

which is homotopy equivalent to a torus.

- The singularity link of \mathcal{A}_Δ is homotopy equivalent to a wedge of spheres.

Coordinate arrangement \mathcal{A}_Δ
When a complex is not shellable

Example

Nonshellable complex Δ

- The complement of \mathcal{A}_Δ is
 \[\mathbb{R}^4 - \left[\{ x_1 = x_2 = 0 \} \cup \{ x_3 = x_4 = 0 \} \right] \]
 which is homotopy equivalent to a torus.
- The singularity link of \mathcal{A}_Δ is homotopy equivalent to a wedge of spheres.

Coordinate arrangement \mathcal{A}_Δ

\[x_1 = x_2 = 0 \]
\[x_3 = x_4 = 0 \]
When a complex is not shellable

Example

Nonshellable complex Δ

Coordinate arrangement A_Δ

- The complement of A_Δ is

$$\mathbb{R}^4 \setminus \{x_1 = x_2 = 0\} \cup \{x_3 = x_4 = 0\}$$

which is homotopy equivalent to a torus.

- The singularity link of A_Δ is homotopy equivalent to a wedge of spheres.

$$x_1 = x_2 = 0$$

$$x_3 = x_4 = 0$$
When a complex is not shellable

Example

Nonshellable complex Δ

Coordinate arrangement \mathcal{A}_Δ

- The complement of \mathcal{A}_Δ is

$$\mathbb{R}^4 - [\{x_1 = x_2 = 0\} \cup \{x_3 = x_4 = 0\}]$$

which is homotopy equivalent to a torus.

- The singularity link of \mathcal{A}_Δ is homotopy equivalent to a wedge of spheres.
Thank you for your attention!!