The fundamental groupoid scheme and applications

Phùng Hồ Hải

Institute of Mathematics Hà Nội

KIAS, Seoul 11-2008
The aim of the talk is to report some results concerning the fundamental group scheme of a scheme.
Grothendieck’s arithmetic fundamental group

- X/k finite type, connected, k perfect, $\bar{x} \to X$ geom. point, \rightsquigarrow
 $k \subset \bar{k} \subset \kappa(\bar{x})$
Grothendieck’s arithmetic fundamental group

- X/k finite type, connected, k perfect, $\bar{x} \to X$ geom. point, \rightsquigarrow
 $k \subset \bar{k} \subset \kappa(\bar{x})$
- Category $\text{ECov}(X)$:
Grothendieck’s arithmetic fundamental group

- X/k finite type, connected, k perfect, $\bar{x} \rightarrow X$ geom. point, \rightsquigarrow
 $k \subset \bar{k} \subset \kappa(\bar{x})$
- Category $\text{E Cov}(X)$:
 Obj: $\pi : Y \rightarrow X$ étale covering
Grothendieck’s arithmetic fundamental group

- X/k finite type, connected, k perfect, $\bar{x} \rightarrow X$ geom. point, \rightsquigarrow
 $k \subset \bar{k} \subset \kappa(\bar{x})$

- Category $\text{ECov}(X)$:
 - Obj: $\pi : Y \rightarrow X$ étale covering
 - Mor: $Y_1 \xrightarrow{h} Y_2$

Fiber functor: $\text{ECov}(X) \xrightarrow{\omega} \text{FSets}$, $\pi \mapsto \pi^{-1}(\bar{x})$

Defn: $\pi_1(X, \bar{x}) := \text{Aut}(\omega_{\bar{x}})$

Arithmetic fundamental group, it is a pro-finite group
Grothendieck’s arithmetic fundamental group

- X/k finite type, connected, k perfect, $\bar{x} \rightarrow X$ geom. point, $k \subset \bar{k} \subset \kappa(\bar{x})$

- Category $\text{ECov}(X)$:

 Obj: $\pi : Y \rightarrow X$ étale covering

 Mor: $\begin{tikzcd}
 Y_1 \arrow[r, h] \arrow[dr, \pi_1] & Y_2 \arrow[dl, \pi_2] \\
 & X
 \end{tikzcd}$

- Fiber functor: $\text{ECov}(X) \xrightarrow{\omega_{\bar{x}}} \text{FSets}$, $\pi \mapsto \pi^{-1}(\bar{x})$
Grothendieck’s arithmetic fundamental group

- X/k finite type, connected, k perfect, $\bar{x} \to X$ geometric point, $\sim \\
k \subset \bar{k} \subset \kappa(\bar{x})$

- Category $\text{ECov}(X)$:
 - Obj: $\pi: Y \to X$ étale covering

- Fiber functor: $\text{ECov}(X) \xrightarrow{\omega_{\bar{x}}} \text{FSets}, \pi \mapsto \pi^{-1}(\bar{x})$

- **Defn:** $\pi_1(X, \bar{x}) := \text{Aut}(\omega_{\bar{x}})$, *arithmetic fundamental group*, it is a pro-finite group
Grothendieck’s theorem

Thm:

- $\operatorname{ECov}(X) \cong \pi_1(X, \bar{x}) \to \pi_1(\bar{X})$ extends to pro-objects $\pi_1(X, \bar{x})$ acting on itself via translations $\sim \tilde{\pi}_{\bar{x}}: \tilde{X}_{\bar{x}} \to X_{\bar{x}}$ (universal covering with base point \bar{x}) with $\omega_{\bar{x}}(\tilde{\pi}_{\bar{x}}) = \pi_1(X, \bar{x})$.

- X geometrically connected, $\operatorname{ECov}(k) \subset \operatorname{ECov}(X)$ via pullback.

Conjecture (Grothendieck):

Assume X/k hyperbolic curve, k/\mathbb{Q} of finite type. Let $Y \supset X$ be smooth compactification. Then

- (a) sections of ϵ are determined by k-points of Y;
- (b) to a k-point in X there corresponds a unique section;
- (c) to a k-point in $Y \setminus X$ there corresponds a packet of uncountably many sections.
Grothendieck's theorem

- **Thm:**
 - Equivalence of categories $\text{ECoV}(X) \xrightarrow{\omega_{\bar{x}}} \pi_1(X, \bar{x}) \to \text{FSets}$
Thm:
- Equivalence of categories $\text{ECov}(X) \xrightarrow{\omega_{\bar{x}}} \pi_1(X, \bar{x}) \to \text{F Sets}$
- extends to pro-objects $\pi_1(X, \bar{x})$ acting on itself via translations $\sim \tilde{\pi}_{\bar{x}} : \tilde{X}_{\bar{x}} \to X$ (universal covering with base point \bar{x}) with $\omega_{\bar{x}}(\tilde{\pi}_{\bar{x}}) = \pi_1(X, \bar{x})$.

Conjecture (Grothendieck):
- Assume X/k hyperbolic curve, k/\mathbb{Q} of finite type. Let $Y \supset X$ be smooth compactification. Then
 - (a) sections of ϵ are determined by k-points of Y
 - (b) to a k-point in X there corresponds a unique section
 - (c) to a k-point in $Y \setminus X$ there corresponds a packet of uncountably many sections.
Grothendieck’s theorem

Thm:

- Equivalence of categories $\text{ECov}(X) \xrightarrow{\omega_{\bar{x}}} \pi_1(X, \bar{x}) - \text{FSets}$
- Extends to pro-objects
 - $\pi_1(X, \bar{x})$ acting on itself via translations $\sim \tilde{\pi}_\bar{x} : \tilde{X}_{\bar{x}} \to X$ (universal covering with base point \bar{x}) with $\omega_{\bar{x}}(\tilde{\pi}_\bar{x}) = \pi_1(X, \bar{x})$.
- X geometrically connected, $\text{ECov}(k) \subset \text{ECov}(X)$ via pullback \sim exact sequence

\[
1 \to \pi_1(\tilde{X}, \bar{x}) \to \pi_1(X, \bar{x}) \xrightarrow{\epsilon} \text{Gal}(\bar{k}) \to 1
\]
Grothendieck’s theorem

- **Thm:**
 - Equivalence of categories $\text{ECov}(X) \xrightarrow{\omega_{\bar{x}}} \pi_1(X, \bar{x}) \rightarrow \text{FSets}$
 - extends to pro-objects
 - $\pi_1(X, \bar{x})$ acting on itself via translations $\sim \tilde{\pi}_{\bar{x}} : \tilde{\pi}_{\bar{x}} \rightarrow X$ (universal covering with base point \bar{x}) with $\omega_{\bar{x}}(\tilde{\pi}_{\bar{x}}) = \pi_1(X, \bar{x})$.
 - X geometrically connected, $\text{ECov}(k) \subset \text{ECov}(X)$ via pullback \sim exact sequence
 $$1 \rightarrow \pi_1(\tilde{X}, \bar{x}) \rightarrow \pi_1(X, \bar{x}) \xrightarrow{\epsilon} \text{Gal}(\bar{k}) \rightarrow 1$$

- **Conjecture (Grothendieck):**
Grothendieck’s theorem

- **Thm:**
 - Equivalence of categories $\text{ECov}(X) \xrightarrow{\pi_1(X, \bar{x}) \sim \approx} \pi_1(X, \bar{x}) - \text{FSets}$
 - extends to pro-objects
 $\pi_1(X, \bar{x})$ acting on itself via translations $\sim \mapsto \tilde{\pi}_{\bar{x}} : \tilde{X}_{\bar{x}} \to X$ *(universal covering with base point \bar{x})* with $\omega_{\bar{x}}(\tilde{\pi}_{\bar{x}}) = \pi_1(X, \bar{x})$.
 - X geometrically connected, $\text{ECov}(k) \subset \text{ECov}(X)$ via pullback $\sim \mapsto$ exact sequence
 $$1 \to \pi_1(\tilde{X}, \bar{x}) \to \pi_1(X, \bar{x}) \xrightarrow{\epsilon} \text{Gal}(\bar{k}) \to 1$$

- **Conjecture (Grothendieck):**
 Assume X/k hyperbolic curve, k/\mathbb{Q} of finite type. Let $Y \supset X$ be smooth compactification. Then
Grothendieck’s theorem

- **Thm:**
 - Equivalence of categories $\text{ECov}(X) \xrightarrow{\omega_X} \pi_1(X, \bar{x}) \rightarrow \text{FSets}$
 - extends to pro-objects
 - $\pi_1(X, \bar{x})$ acting on itself via translations $\sim \sim \tilde{\pi}_X : \tilde{X}_{\bar{x}} \rightarrow X$ (universal covering with base point \bar{x}) with $\omega_{\bar{x}}(\tilde{\pi}_X) = \pi_1(X, \bar{x})$.
 - X geometrically connected, $\text{ECov}(k) \subset \text{ECov}(X)$ via pullback \sim exact sequence
 $$1 \rightarrow \pi_1(\tilde{X}, \bar{x}) \rightarrow \pi_1(X, \bar{x}) \xrightarrow{\epsilon} \text{Gal}(\bar{k}) \rightarrow 1$$

- **Conjecture (Grothendieck):**
 Assume X/k hyperbolic curve, k/\mathbb{Q} of finite type. Let $Y \supset X$ be smooth compactification. Then
 (a) sections of ϵ are determined by k-points of Y
Grothendieck’s theorem

Thm:
- Equivalence of categories $\text{ECov}(X) \xrightarrow{\omega_{\bar{x}}} \pi_1(X, \bar{x}) \rightarrow \text{FSets}$
- Extends to pro-objects $\pi_1(X, \bar{x})$ acting on itself via translations\(\tilde{\pi}_{\bar{x}} : \tilde{X}_{\bar{x}} \rightarrow X\) (universal covering with base point \bar{x}) with $\omega_{\bar{x}}(\tilde{\pi}_{\bar{x}}) = \pi_1(X, \bar{x})$.
- X geometrically connected, $\text{ECov}(k) \subset \text{ECov}(X)$ via pullback \hookrightarrow exact sequence

\[1 \rightarrow \pi_1(\tilde{X}, \bar{x}) \rightarrow \pi_1(X, \bar{x}) \xrightarrow{\epsilon} \text{Gal}(\bar{k}) \rightarrow 1\]

Conjecture (Grothendieck):
Assume X/k hyperbolic curve, k/\mathbb{Q} of finite type. Let $Y \supset X$ be smooth compactification. Then

(a) sections of ϵ are determined by k-points of Y
(b) to a k-point in X there corresponds a unique section
Grothendieck’s theorem

Thm:
- Equivalence of categories $\text{ECov}(X) \xrightarrow{\omega \bar{x}} \pi_1(X, \bar{x}) \to \text{FSets}$
- Extends to pro-objects $\pi_1(X, \bar{x})$ acting on itself via translations $\sim \tilde{\pi} \bar{x} : \tilde{\mathcal{X}} \to X$ (universal covering with base point \bar{x}) with $\omega \bar{x}(\tilde{\pi} \bar{x}) = \pi_1(X, \bar{x})$.
- X geometrically connected, $\text{ECov}(k) \subseteq \text{ECov}(X)$ via pullback \sim exact sequence

$$1 \to \pi_1(\tilde{\mathcal{X}}, \bar{x}) \to \pi_1(X, \bar{x}) \xrightarrow{\epsilon} \text{Gal}(\bar{k}) \to 1$$

Conjecture (Grothendieck):

Assume X/k hyperbolic curve, k/\mathbb{Q} of finite type. Let $Y \supset X$ be smooth compactification. Then

- (a) sections of ϵ are determined by k-points of Y
- (b) to a k-point in X there corresponds a unique section
- (c) to a k-point in $Y \setminus X$ there corresponds a packet of uncountably many sections
Nori’s fundamental group scheme $\pi^N(X, x)$

- X/k complete, reduced, geometrically connected, k perfect
Nori’s fundamental group scheme $\pi^N(X, x)$

- X/k complete, reduced, geometrically connected, k perfect
- Nori’s idea: apply neutral Tannaka duality to tensor category of essentially finite bundles on X
Nori’s fundamental group scheme $\pi^N(X, x)$

- X/k complete, reduced, geometrically connected, k perfect
- Nori’s idea: apply neutral Tannaka duality to tensor category of essentially finite bundles on X
- Neutral Tannaka duality (Grothendieck-Saavedra):
Nori’s fundamental group scheme $\pi^N(X, x)$

- X/k complete, reduced, geometrically connected, k perfect
- Nori’s idea: apply neutral Tannaka duality to tensor category of essentially finite bundles on X
- Neutral Tannaka duality (Grothendieck-Saavedra):
 \[
 \begin{pmatrix}
 \text{Tensor category over } k^+ \\
 \text{fiber functor to } \text{Vect}_k
 \end{pmatrix}
 \xleftrightarrow{1-1}
 \text{(Group scheme over } k)\]
Nori’s fundamental group scheme $\pi^N(X, x)$

- X/k complete, reduced, geometrically connected, k perfect
- Nori’s idea: apply neutral Tannaka duality to tensor category of essentially finite bundles on X
- Neutral Tannaka duality (Grothendieck-Saavedra):
 \[
 \left(\begin{array}{c}
 \text{Tensor category over } k^+ \\
 \text{fiber functor to } \text{Vect}_k
 \end{array} \right) \leftrightarrow (\text{Group scheme over } k)
 \]
- Nori’s bundles:
Nori’s fundamental group scheme $\pi^N(X, x)$

- X/k complete, reduced, geometrically connected, k perfect
- Nori’s idea: apply neutral Tannaka duality to tensor category of essentially finite bundles on X
- Neutral Tannaka duality (Grothendieck-Saavedra):

 $$
 \left(\begin{array}{c}
 \text{Tensor category over } k^+ \\
 \text{fiber functor to } \text{Vect}_k
 \end{array} \right) \xleftrightarrow{1-1} \text{(Group scheme over } k)$$

- Nori’s bundles:
 - finite bundle: satisfies polynomial equation with integral coefficients (in the sense of Grothendieck ring) \implies semistable of degree 0
Nori’s fundamental group scheme $\pi^N(X, x)$

- X/k complete, reduced, geometrically connected, k perfect
- Nori’s idea: apply neutral Tannaka duality to tensor category of essentially finite bundles on X
- Neutral Tannaka duality (Grothendieck-Saavedra):
 \[
 \left(\begin{array}{c}
 \text{Tensor category over } k^+ \\
 \text{fiber functor to } \text{Vect}_k
 \end{array} \right) \overset{1-1}{\longleftrightarrow} \text{(Group scheme over } k)
 \]
- Nori’s bundles:
 - finite bundle: satisfies polynomial equation with integral coefficients (in the sense of Grothedieck ring) \implies semistable of degree 0
 - essentially finite bundles: semistable degree 0 subbundle of a finite one bundle
Nori’s fundamental group scheme $\pi^N(X, x)$

- X/k complete, reduced, geometrically connected, k perfect
- Nori’s idea: apply neutral Tannaka duality to tensor category of essentially finite bundles on X
- Neutral Tannaka duality (Grothendieck-Saavedra):

 \[
 \begin{pmatrix}
 \text{Tensor category over } k^+ \\
 \text{fiber functor to } \text{Vect}_k
 \end{pmatrix}
 \leftrightarrow
 \begin{pmatrix}
 \text{Group scheme over } k
 \end{pmatrix}
 \]

- Nori’s bundles:
 - finite bundle: satisfies polynomial equation with integral coefficients (in the sense of Grothedieck ring) \Rightarrow semistable of degree 0
 - essentially finite bundles: semistable degree 0 subbundle of a finite one bundle

- Fiber functor: fixing a k-point on X and taking fiber at that point $\sim\pi^N(X, x)$ - pro-finite k-group scheme
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- $\text{Char}(k) = 0$: Nori’s fundamental group gives back Grothendieck’s geometric fundamental group $\pi^N(X, x)(\bar{k}) = \pi_1(\bar{X}, \bar{x})$
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- \text{Char}(k) = 0: \text{Nori’s fundamental group gives back Grothendieck’s geometric fundamental group } \pi^N(X, x)(\bar{k}) = \pi_1(\bar{X}, \bar{x})
- \text{Char}(k) = p > 0: \text{the pro-étale quotient of } \pi^N(X, x) \text{ gives back } \pi_1(\bar{X}, \bar{x}).
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- **Char(k)$=0$**: Nori’s fundamental group gives back Grothendieck’s geometric fundamental group $\pi^N(X, x)(\bar{k}) = \pi_1(\bar{X}, \bar{x})$
- **Char(k)$=p > 0$**: the pro-étale quotient of $\pi^N(X, x)$ gives back $\pi_1(\bar{X}, \bar{x})$.
- **Case of finite group scheme H**

The composition $H_{\text{red}} \rightarrow H \rightarrow H_{\text{et}}$ is an isomorphism $\Rightarrow H = H_0 \ltimes H_{\text{et}}$

The composition $H_0 \rightarrow H \rightarrow H_{\text{loc}}$ is not necessarily an isomorphism (H_{loc} is the largest local quotient of H).

For $\pi_N(X, x)$ (pro-finite group scheme) Tannaka duality defines the quotient maps $\pi_N \rightarrow \pi_F$ – the pro-local quotient, $\pi_N \rightarrow \pi_{\text{ét}}$ – the pro-étale quotient.

$\pi_N^0 = \ker(\pi_N \rightarrow \pi_{\text{ét}})$ the connected component of 1 π_N^0 may be larger than $\pi_F(X, x)$ one has a splitting $\pi_{\text{ét}} \rightarrow \pi_N \Rightarrow \pi_N$ is a semi-direct product of $\pi_{\text{ét}}$ and π_N^0.

If π_N is commutative then the above product is direct.

Question: is the converse true?
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- Char(k) = 0: Nori’s fundamental group gives back Grothendieck’s geometric fundamental group $\pi^N(X, x)(\overline{k}) = \pi_1(\overline{X}, \overline{x})$
- Char(k) = $p > 0$: the pro-étale quotient of $\pi^N(X, x)$ gives back $\pi_1(\overline{X}, \overline{x})$.
- Case of finite group scheme H
 - The composition $H_{\text{red}} \rightarrow H \rightarrow H^{\text{ét}}$ is an isomorphism $\rightsquigarrow H = H^0 \rtimes H^{\text{ét}}$

The composition $H_{\text{red}} \rightarrow H \rightarrow H^{\text{ét}}$ is an isomorphism $\rightsquigarrow H = H^0 \rtimes H^{\text{ét}}$
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- \textbf{Char}(k)\equiv 0: \text{Nori’s fundamental group gives back Grothendieck’s geometric fundamental group } \pi^N(X, x)(\bar{k}) = \pi_1(\bar{X}, \bar{x})
- \text{Char}(k)\equiv p > 0: \text{the pro-étale quotient of } \pi^N(X, x) \text{ gives back } \pi_1(\bar{X}, \bar{x})

\textbf{Case of finite group scheme } H

- The composition \(H_{\text{red}} \to H \to H^{\text{ét}} \) is an isomorphism \(\sim \to H = H^0 \ltimes H^{\text{ét}} \)
- The composition \(H^0 \to H \to H^{\text{loc}} \) is not necessarily an isomorphism (\(H^{\text{loc}} \) is the largest local quotient of \(H \)).
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- **Char**(k)$=0$: Nori’s fundamental group gives back Grothendieck’s geometric fundamental group $\pi^N(X, x)(\bar{k}) = \pi_1(\bar{X}, \bar{x})$
- **Char**(k)$=p > 0$: the pro-étale quotient of $\pi^N(X, x)$ gives back $\pi_1(\bar{X}, \bar{x})$.

Case of finite group scheme H
- The composition $H_{\text{red}} \to H \to H^{\text{ét}}$ is an isomorphism $\sim H = H^0 \rtimes H^{\text{ét}}$
- The composition $H^0 \to H \to H^{\text{loc}}$ is not necessarily an isomorphism (H^{loc} is the largest local quotient of H).

For $\pi^N(X, x)$ (pro-finite group scheme)
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- **Char\(k\) = 0**: Nori’s fundamental group gives back Grothendieck’s geometric fundamental group \(\pi^N(X, x)(\overline{k}) = \pi_1(\overline{X}, \overline{x})\)
- **Char\(k\) = \(p > 0\)**: the pro-étale quotient of \(\pi^N(X, x)\) gives back \(\pi_1(\overline{X}, \overline{x})\).

Case of finite group scheme \(H\)
- The composition \(H_{\text{red}} \rightarrow H \rightarrow H^{\text{ét}}\) is an isomorphism \(\sim H = H^0 \rtimes H^{\text{ét}}\)
- The composition \(H^0 \rightarrow H \rightarrow H^{\text{loc}}\) is not necessarily an isomorphism (\(H^{\text{loc}}\) is the largest local quotient of \(H\)).

For \(\pi^N(X, x)\) (pro-finite group scheme)
- Tannaka duality defines the quotient maps \(\pi^N \rightarrow \pi^F\) – the pro-local quotient, \(\pi^N \rightarrow \pi^{\text{ét}}\) – the pro-étale quotient.
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- \(\text{Char}(k) = 0 \): Nori’s fundamental group gives back Grothendieck’s geometric fundamental group \(\pi^N(X, x)(\bar{k}) = \pi_1(\bar{X}, \bar{x}) \)
- \(\text{Char}(k) = p > 0 \): the pro-étale quotient of \(\pi^N(X, x) \) gives back \(\pi_1(\bar{X}, \bar{x}) \).

Case of finite group scheme \(H \)

- The composition \(H_{\text{red}} \to H \to \text{H ét} \) is an isomorphism \(\cong H = H^0 \times \text{H ét} \)
- The composition \(H^0 \to H \to \text{H loc} \) is not necessarily an isomorphism (\(\text{H loc} \) is the largest local quotient of \(H \)).

For \(\pi^N(X, x) \) (pro-finite group scheme)

- Tannaka duality defines the quotient maps \(\pi^N \to \pi^F \) – the pro-local quotient, \(\pi^N \to \pi^\text{ét} \) – the pro-étale quotient.
- \(\pi^N_0 = \text{Ker}(\pi^N \to \pi^\text{ét}) \) the connected component of 1
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- \(\text{Char}(k)=0\) : Nori’s fundamental group gives back Grothendieck’s geometric fundamental group \(\pi^N(X, x)(\bar{k}) = \pi_1(\bar{X}, \bar{x})\)
- \(\text{Char}(k)=p > 0\): the pro-étale quotient of \(\pi^N(X, x)\) gives back \(\pi_1(\bar{X}, \bar{x})\).

Case of finite group scheme \(H\)
- The composition \(H_{\text{red}} \to H \to H^{\text{ét}}\) is an isomorphism \(\sim H = H^0 \rtimes H^{\text{ét}}\)
- The composition \(H^0 \to H \to H^{\text{loc}}\) is not necessarily an isomorphism (\(H^{\text{loc}}\) is the largest local quotient of \(H\)).

For \(\pi^N(X, x)\) (pro-finite group scheme)
- Tannaka duality defines the quotient maps \(\pi^N \to \pi^F\) – the pro-local quotient, \(\pi^N \to \pi^{\text{ét}}\) – the pro-étale quotient.
- \(\pi^N_0 = \text{Ker}(\pi^N \to \pi^{\text{ét}})\) the connected component of \(1\)
- \(\pi^N_0\) may be larger than \(\pi^F(X, x)\)
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- \(\text{Char}(k)=0 \) : Nori’s fundamental group gives back Grothendieck’s geometric fundamental group \(\pi^N(X, x)(\overline{k}) = \pi_1(\overline{X}, \overline{x}) \)
- \(\text{Char}(k)=p > 0 \) : the pro-étale quotient of \(\pi^N(X, x) \) gives back \(\pi_1(\overline{X}, \overline{x}) \).

Case of finite group scheme \(H \)
- The composition \(H_{\text{red}} \to H \to H^\text{ét} \) is an isomorphism \(\hookrightarrow H = H^0 \ltimes H^\text{ét} \)
- The composition \(H^0 \to H \to H^{\text{loc}} \) is not necessarily an isomorphism \((H^{\text{loc}} \) is the largest local quotient of \(H \)).

For \(\pi^N(X, x) \) (pro-finite group scheme)
- Tannaka duality defines the quotient maps \(\pi^N \to \pi^F \) – the pro-local quotient, \(\pi^N \to \pi^\text{ét} \) – the pro-étale quotient.
- \(\pi^N_0 = \text{Ker}(\pi^N \to \pi^\text{ét}) \) the connected component of 1
- \(\pi^N_0 \) may be larger than \(\pi^F(X, x) \)
- one has a splitting \(\pi^\text{ét} \to \pi^N \)
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- Char$(k)=0$: Nori’s fundamental group gives back Grothendieck’s geometric fundamental group $\pi^N(X, x)(\bar{k}) = \pi_1(\bar{X}, \bar{x})$
- Char$(k)=p > 0$: the pro-étale quotient of $\pi^N(X, x)$ gives back $\pi_1(\bar{X}, \bar{x})$.

Case of finite group scheme H
- The composition $H_{\text{red}} \to H \to H^{\text{ét}}$ is an isomorphism $\leadsto H = H^0 \rtimes H^{\text{ét}}$
- The composition $H^0 \to H \to H^{\text{loc}}$ is not necessarily an isomorphism (H^{loc} is the largest local quotient of H).

For $\pi^N(X, x)$ (pro-finite group scheme)
- Tannaka duality defines the quotient maps $\pi^N \to \pi^F$ – the pro-local quotient, $\pi^N \to \pi^{\text{ét}}$ – the pro-étale quotient.
- $\pi^N_0 = \text{Ker}(\pi^N \to \pi^{\text{ét}})$ the connected component of 1
- π^N_0 may be larger than $\pi^F(X, x)$
- one has a splitting $\pi^{\text{ét}} \to \pi^N$
- $\leadsto \pi^N$ is a semi-direct product of $\pi^{\text{ét}}$ and π^N_0
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- **Char**(\(k\))\(=0\) : Nori’s fundamental group gives back Grothendieck’s geometric fundamental group \(\pi^N(X, x)(k) = \pi_1(\bar{X}, \bar{x})\)

- **Char**(\(k\))\(=p > 0\): the pro-étale quotient of \(\pi^N(X, x)\) gives back \(\pi_1(\bar{X}, \bar{x})\).

Case of finite group scheme \(H\)
- The composition \(H_{\text{red}} \to H \to H^{\text{ét}}\) is an isomorphism \(\sim H = H^0 \rtimes H^{\text{ét}}\)
- The composition \(H^0 \to H \to H^{\text{loc}}\) is not necessarily an isomorphism (\(H^{\text{loc}}\) is the largest local quotient of \(H\)).

For \(\pi^N(X, x)\) (pro-finite group scheme)
- Tannaka duality defines the quotient maps \(\pi^N \to \pi^F\) – the pro-local quotient, \(\pi^N \to \pi^{\text{ét}}\) – the pro-étale quotient.
- \(\pi^N_0 = \text{Ker}(\pi^N \to \pi^{\text{ét}})\) the connected component of 1
- \(\pi^N_0\) may be larger than \(\pi^F(X, x)\)
- one has a splitting \(\pi^{\text{ét}} \to \pi^N\)
 \(\sim \) \(\pi^N\) is a semi-direct product of \(\pi^{\text{ét}}\) and \(\pi^N_0\)
- If \(\pi^N\) is commutative then the a above product is direct
Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

- \(\text{Char}(k)=0 \): Nori’s fundamental group gives back Grothendieck’s geometric fundamental group \(\pi^N(X, x)(\overline{k}) = \pi_1(\overline{X}, \overline{x}) \)
- \(\text{Char}(k)=p > 0 \): the pro-étale quotient of \(\pi^N(X, x) \) gives back \(\pi_1(\overline{X}, \overline{x}) \).

Case of finite group scheme \(H \)
- The composition \(H_{\text{red}} \to H \to H^\text{ét} \) is an isomorphism \(\leadsto H = H^0 \rtimes H^\text{ét} \)
- The composition \(H^0 \to H \to H^\text{loc} \) is not necessarily an isomorphism (\(H^\text{loc} \) is the largest local quotient of \(H \)).

For \(\pi^N(X, x) \) (pro-finite group scheme)
- Tannaka duality defines the quotient maps \(\pi^N \to \pi^F \) – the pro-local quotient, \(\pi^N \to \pi^\text{ét} \) – the pro-étale quotient.
- \(\pi^N_0 = \ker(\pi^N \to \pi^\text{ét}) \) the connected component of 1
- \(\pi^N_0 \) may be larger than \(\pi^F(X, x) \)
- one has a splitting \(\pi^\text{ét} \to \pi^N \)
- \(\leadsto \pi^N \) is a semi-direct product of \(\pi^\text{ét} \) and \(\pi^N_0 \)
- If \(\pi^N \) is commutative then the above product is direct
- Question: is the converse true?
Case X/k smooth, char $k = 0$

The fundamental groupoid schemes $\Pi(X, \bar{x})$ (Esnault-Hai, 2008)

- **Problem**: give a notion of fundamental group scheme for a not necessarily complete scheme.
Case X/k smooth, char $k = 0$

The fundamental groupoid schemes $\Pi(X, \bar{x})$ (Esnault-Hai, 2008)

- **Problem**: give a notion of fundamental group scheme for a not necessarily complete scheme.
- **Idea**: apply general Tannaka duality to the tensor category of finite connections \rightsquigarrow fundamental groupoid scheme $\Pi(X, \bar{x})$
Case X/k smooth, char $k = 0$

The fundamental groupoid schemes $\Pi(X, \bar{x})$ (Esnault-Hai, 2008)

- **Problem**: give a notion of fundamental group scheme for a not necessarily complete scheme.

- **Idea**: apply general Tannaka duality to the tensor category of finite connections \leadsto fundamental groupoid scheme $\Pi(X, \bar{x})$

- **Finite connection**: a connection satisfying a polynomial equation with coefficients from \mathbb{Z}
Case X/k smooth, char $k = 0$

The fundamental groupoid schemes $\Pi(X, \bar{x})$ (Esnault-Hai, 2008)

- **Problem**: give a notion of fundamental group scheme for a not necessarily complete scheme.

- **Idea**: apply general Tannaka duality to the tensor category of finite connections \hookrightarrow fundamental groupoid scheme $\Pi(X, \bar{x})$

- Finite connection: a connection satisfying a polynomial equation with coefficients from \mathbb{Z}

- **General Tannaka duality**:

 $$\left(\begin{array}{l}
 \text{Tensor category over } k + \\
 \text{fiber functor to } \text{Vect}_K, K \supset k
 \end{array}\right) \overset{1-1}{\leftrightarrow} \left(\begin{array}{l}
 \text{Group scheme over } k \\
 \text{acting transitively on } K
 \end{array}\right)$$
Case \(X/k \) smooth, char\(k = 0 \)

The fundamental groupoid schemes \(\Pi(X, \bar{x}) \) (Esnault-Hai, 2008)

- **Problem**: give a notion of fundamental group scheme for a not necessarily complete scheme.
- **Idea**: apply general Tannaka duality to the tensor category of finite connections \(\rightsquigarrow \) fundamental groupoid scheme \(\Pi(X, \bar{x}) \)
- **Finite connection**: a connection satisfying a polynomial equation with coefficients from \(\mathbb{Z} \)
- **General Tannaka duality**:

\[
\begin{pmatrix}
\text{Tensor category over } k^+ \\
\text{fiber functor to } \text{Vect}_K, K \supset k
\end{pmatrix}
\overset{1-1}{\leftrightarrow}
\begin{pmatrix}
\text{Group scheme over } k \\
\text{acting transitively on } K
\end{pmatrix}
\]

- **Why general Tannaka duality (fiber functor to } \text{Vect}_K \rangle\): to free ourselves from the existence of \(k \)-rational points.
Case X/k smooth, char$k = 0$

The fundamental groupoid schemes $\Pi(X, \bar{x})$ *(Esnault-Hai, 2008)*

- **Problem**: give a notion of fundamental group scheme for a not necessarily complete scheme.
- **Idea**: apply general Tannaka duality to the tensor category of finite connections \leadsto fundamental groupoid scheme $\Pi(X, \bar{x})$.
- **Finite connection**: a connection satisfying a polynomial equation with coefficients from \mathbb{Z}.
- **General Tannaka duality**:

$$
\begin{array}{c}
\left(\begin{array}{c}
\text{Tensor category over } k^+ \\
\text{fiber functor to } \text{Vect}_K, K \supset k
\end{array} \right)
\end{array}
\overset{1-1}{\longleftrightarrow}
\begin{array}{c}
\left(\begin{array}{c}
\text{Group scheme over } k \\
\text{acting transitively on } K
\end{array} \right)
\end{array}
$$

- Why general Tannaka duality (fiber functor to Vect_K): to free ourselves from the existence of k-rational points.
- **Advantage**: $\Pi(X, \bar{x})$ gives back the **arithmetic** fundamental group.
Case X/k smooth, $\text{char} k = 0$

Recall: Affine groupoid schemes

- Affine groupoid scheme Π/k acting on $S := \text{Spec}(K)/k$:

 $(t, s) : \Pi \to S \times_k S$ affine morphism such that:

 - Π acts transitively on S if for any $a, b \in \text{Obj}(\Pi)$ there exists $u : T' \to T$ faithfully flat, such that $\text{Mor}(a \circ u, b \circ u) \neq \emptyset$

 $\leftrightarrow (t, s)$ is a faithfully flat morphism
Case X/k smooth, $\text{char} k = 0$
Recall: Affine groupoid schemes

Affine groupoid scheme Π/k acting on $S := \text{Spec}(K)/k$:
$(t, s) : \Pi \to S \times_k S$ affine morphism such that:
- for any k-scheme T, one has a groupoid $\Pi(T)$
Case X/k smooth, $\text{char} k = 0$

Recall: Affine groupoid schemes

- Affine groupoid scheme Π/k acting on $S := \text{Spec}(K)/k$:
 $(t, s) : \Pi \to S \times_k S$ affine morphism such that:
 - for any k-scheme T, one has a groupoid $\Pi(T)$
 - $\text{Obj}(\Pi(T)) := \text{Mor}_k(T, S)$ (i.e. T-points of S)
Case X/k smooth, $\text{ch} k = 0$

Recall: Affine groupoid schemes

- Affine groupoid scheme Π/k acting on $S := \text{Spec}(K)/k$: $(t, s) : \Pi \to S \times_k S$ affine morphism such that:
 - for any k-scheme T, one has a groupoid $\Pi(T)$
 - $\text{Obj}(\Pi(T)) := \text{Mor}_k(T, S)$ (i.e. T-points of S)
 - $\text{Mor}(a, b) := \{f : T \to \Pi | (t, s) \circ f = (b, a)\}$
Case X/k smooth, char $k = 0$

Recall: Affine groupoid schemes

- Affine groupoid scheme Π/k acting on $S := \text{Spec}(K)/k$:
 $(t, s) : \Pi \to S \times_k S$ affine morphism such that:
 - for any k-scheme T, one has a groupoid $\Pi(T)$
 - $\text{Obj}(\Pi(T)) := \text{Mor}_k(T, S)$ (i.e. T-points of S)
 - $\text{Mor}(a, b) := \{f : T \to \Pi \mid (t, s) \circ f = (b, a)\}$

- Π acts transitively on S if
Case X/k smooth, $\text{chark} = 0$

Recall: Affine groupoid schemes

- Affine groupoid scheme Π/k acting on $S := \text{Spec}(K)/k$: $(t, s) : \Pi \to S \times_k S$ affine morphism such that:
 - for any k-scheme T, one has a groupoid $\Pi(T)$
 - $\text{Obj}(\Pi(T)) := \text{Mor}_k(T, S)$ (i.e. T-points of S)
 - $\text{Mor}(a, b) := \{f : T \to \Pi|(t, s) \circ f = (b, a)\}$
 - Π acts transitively on S if for any $a, b \in \text{Obj}\Pi(T)$ there exists $u : T' \to T$ faithfully flat, such that $\text{Mor}(a \circ u, b \circ u) \neq \emptyset$
Case X/k smooth, $\text{char} k = 0$

Recall: Affine groupoid schemes

- Affine groupoid scheme Π/k acting on $S := \text{Spec}(K)/k$:
 $$(t, s) : \Pi \to S \times_k S$$
 affine morphism such that:
 - for any k-scheme T, one has a groupoid $\Pi(T)$
 - $\text{Obj}(\Pi(T)) := \text{Mor}_k(T, S)$ (i.e. T-points of S)
 - $\text{Mor}(a, b) := \{ f : T \to \Pi | (t, s) \circ f = (b, a) \}$
 - Π acts transitively on S if
 for any $a, b \in \text{Obj} \Pi(T)$ there exists $u : T' \to T$ faithfully flat, such that $\text{Mor}(a \circ u, b \circ u) \neq \emptyset$
 $\iff (t, s)$ is a faithfully flat morphism
Case X/k smooth, char $k = 0$

Recall: Affine groupoid schemes

- Affine groupoid scheme Π/k acting on $S := \text{Spec}(K)/k$:

 $(t, s) : \Pi \to S \times_k S$ affine morphism such that:
 - for any k-scheme T, one has a groupoid $\Pi(T)$
 - $\text{Obj}(\Pi(T)) := \text{Mor}_k(T, S)$ (i.e. T-points of S)
 - $\text{Mor}(a, b) := \{f : T \to \Pi | (t, s) \circ f = (b, a)\}$
 - Π acts transitively on S if
 for any $a, b \in \text{Obj} \Pi(T)$ there exists $u : T' \to T$ faithfully flat, such
 that $\text{Mor}(a \circ u, b \circ u) \neq \emptyset$
 (t, s) is a faithfully flat morphism

- The diagonal group scheme: $\Delta : S \to S \times_k S$ the diagonal map
Case X/k smooth, $\text{char} k = 0$

Recall: Affine groupoid schemes

- Affine groupoid scheme Π/k acting on $S := \text{Spec}(K)/k$: $(t, s) : \Pi \to S \times_k S$ affine morphism such that:
 - for any k-scheme T, one has a groupoid $\Pi(T)$
 - $\text{Obj}(\Pi(T)) := \text{Mor}_k(T, S)$ (i.e. T-points of S)
 - $\text{Mor}(a, b) := \{f : T \to \Pi|(t, s) \circ f = (b, a)\}$
 - Π acts transitively on S if for any $a, b \in \text{Obj}\Pi(T)$ there exists $u : T' \to T$ faithfully flat, such that $\text{Mor}(a \circ u, b \circ u) \neq \emptyset$
 - (t, s) is a faithfully flat morphism

- The diagonal group scheme: $\Delta : S \to S \times_k S$ the diagonal map
 - $\Pi^\Delta := \Pi \times_{S \times S} S$, Π^Δ is a flat S-group scheme,
Case X/k smooth, $\text{char} k = 0$

Recall: Affine groupoid schemes

- Affine groupoid scheme Π/k acting on $S := \text{Spec}(K)/k$: $(t, s) : \Pi \to S \times_k S$ affine morphism such that:
 - for any k-scheme T, one has a groupoid $\Pi(T)$
 - $\text{Obj}(\Pi(T)) := \text{Mor}_k(T, S)$ (i.e. T-points of S)
 - $\text{Mor}(a, b) := \{f : T \to \Pi| (t, s) \circ f = (b, a)\}$
 - Π acts transitively on S if
 for any $a, b \in \text{Obj}(\Pi(T))$ there exists $u : T' \to T$ faithfully flat, such that $\text{Mor}(a \circ u, b \circ u) \neq \emptyset$
 (t, s) is a faithfully flat morphism

- The diagonal group scheme: $\Delta : S \to S \times_k S$ the diagonal map
 - $\Pi^\Delta := \Pi \times_{S \times S} S$, Π^Δ is a flat S-group scheme,
 - exact sequence of groupoid schemes $\Pi^\Delta \to \Pi \to S \times_k S$
 \downarrow \downarrow \downarrow
 $S \xrightarrow{\Delta} S \times_k S \xrightarrow{=} S \times_k S$

P.H. Hai (Inst of Math-HN)
Case X/k smooth, char $k = 0$

The fundamental groupoid schemes $\Pi(X, \bar{x})$ (Esnault-Hai, 2008)

- **Settings:**

 - X/k smooth, char $k = 0$
 - Settings:
 - $FConn(X)$ (finite connections) is a k-linear abelian rigid tensor category
 - $\bar{x}: \bar{k} \to X$ geometric point defines fibre functor to $\text{Vec}_{\bar{k}}$
 - Tannaka duality yields $\Pi(X, \bar{x})$ – the fundamental groupoid scheme based at \bar{x}
 - Compatibility with base changes:
 - $\Pi(\bar{X}, \bar{x}) \cong \Pi(X, x) \Delta \rightarrow \Pi(X, \bar{x}) \Delta \rightarrow S \times_k S \Delta \rightarrow S \times_k S=$
Case X/k smooth, $\text{char} k = 0$

The fundamental groupoid schemes $\Pi(X, \bar{x})$ (Esnault-Hai, 2008)

- **Settings:**
 - X/k smooth, geometrically connected, $\text{char}(k) = 0$,

...
Case X/k smooth, char $k = 0$

The fundamental groupoid schemes $\Pi(X, \bar{x})$ (Esnault-Hai, 2008)

- **Settings:**
 - X/k smooth, geometrically connected, char(k) = 0,
 - $\text{FConn}(X)$ (finite connections) is a k-linear abelian rigid tensor category
Case X/k smooth, $\text{char} k = 0$

The fundamental groupoid schemes $\Pi(X, \bar{x})$ (Esnault-Hai, 2008)

- **Settings:**
 - X/k smooth, geometrically connected, $\text{char}(k) = 0$,
 - $\text{FConn}(X)$ (finite connections) is a k-linear abelian rigid tensor category
 - $\bar{x} : \bar{k} \to X$ geometric point defines fibre functor to $\text{Vec}_{\bar{k}}$
Case \mathcal{X}/k smooth, $\text{char} k = 0$

The fundamental groupoid schemes $\Pi(\mathcal{X}, \bar{x})$ (Esnault-Hai, 2008)

- **Settings:**
 - \mathcal{X}/k smooth, geometrically connected, $\text{char}(k) = 0$,
 - $\text{FConn}(\mathcal{X})$ (finite connections) is a k-linear abelian rigid tensor category
 - $\bar{x} : \bar{k} \to \mathcal{X}$ geometric point defines fibre functor to $\text{Vec}_{\bar{k}}$
 - \Leftrightarrow Tannaka duality yields $\Pi(\mathcal{X}, \bar{x})$ – the fundamental groupoid scheme based at \bar{x}
Case X/k smooth, char$k = 0$

The fundamental groupoid schemes $\Pi(X, \bar{x})$ (Esnault-Hai, 2008)

- **Settings:**
 - X/k smooth, geometrically connected, char$(k) = 0$,
 - $\text{FConn}(X)$ (finite connections) is a k-linear abelian rigid tensor category
 - $\bar{x} : \bar{k} \to X$ geometric point defines fibre functor to $\text{Vec}_{\bar{k}}$
 - \rightsquigarrow Tannaka duality yields $\Pi(X, \bar{x})$ – the fundamental groupoid scheme based at \bar{x}

- **Compatibility with base changes:**
Case X/k smooth, char$k = 0$

The fundamental groupoid schemes $\Pi(X, \bar{x})$ (Esnault-Hai, 2008)

- **Settings:**
 - X/k smooth, geometrically connected, char$(k) = 0$,
 - $\text{FConn}(X)$ (finite connections) is a k-linear abelian rigid tensor category
 - $\bar{x}: \bar{k} \to X$ geometric point defines fibre functor to $\text{Vec}_{\bar{k}}$
 - \(\leadsto\) Tannaka duality yields $\Pi(X, \bar{x})$ – the fundamental groupoid scheme based at \bar{x}

- **Compatibility with base changes:**
 - $\Pi(\bar{X}, \bar{x}) \cong \Pi(X, x)^\Delta$
Case X/k smooth, char$k = 0$
The fundamental groupoid schemes $\Pi(X, \bar{x})$ (Esnault-Hai, 2008)

- **Settings:**
 - X/k smooth, geometrically connected, char$(k) = 0$,
 - $\text{FConn}(X)$ (finite connections) is a k-linear abelian rigid tensor category
 - $\bar{x} : \bar{k} \to X$ geometric point defines fibre functor to $\text{Vec}_{\bar{k}}$
 - Tannaka duality yields $\Pi(X, \bar{x})$ – the fundamental groupoid scheme based at \bar{x}

- **Compatibility with base changes:**
 - $\Pi(\bar{X}, \bar{x}) \cong \Pi(X, x)^\Delta$
 - Exact sequence
 \[
 \begin{align*}
 \Pi(\bar{X}, \bar{x}) = \Pi(X, x)^\Delta & \to \Pi(X, \bar{x}) \to S \times_k S \\
 S & \to S \times_k S \cong S \times_k S
 \end{align*}
 \]
Case X/k smooth, $\text{char} k = 0$

Compare with Grothendieck group (Esnault-Hai, 2008)

- Compare with Grothendieck fundamental group

\[
\pi^1(\bar{X}, \bar{x}) \sim \Pi(\bar{k}) = \Delta(\bar{k})
\]

\[
\pi^1(X, \bar{x}) \sim \Pi_s(\bar{k}) \Rightarrow \Delta(\bar{k})
\]

\[
\Rightarrow \text{Commutative diagram of exact lines}
\]

\[
\Rightarrow \Rightarrow \Rightarrow \Rightarrow
\]

Consequence: there is one-one correspondence between neutral fiber functors of $FConn(X)$ and section to ϵ (up to conjugations by $\pi^1(\bar{X}, \bar{x})$).

\[
\Rightarrow \text{answer questions (b), (c) of section conjecture.}
\]
Case X/k smooth, char $k = 0$

Compare with Grothendieck group (Esnault-Hai, 2008)

- Compare with Grothendieck fundamental group
 - $\pi_1(\bar{X}, \bar{x}) \cong \Pi(X)^A(\bar{k})$
Case X/k smooth, $\text{char} k = 0$

Compare with Grothendieck group (Esnault-Hai, 2008)

- Compare with Grothendieck fundamental group
 - $\pi_1(\bar{X}, \bar{x}) \cong \Pi(X)^{\Delta}(\bar{k})$
 - $\pi_1(X, \bar{x}) \cong \Pi_s(X, \bar{x})(\bar{k})$

Consequence: there is one-one correspondence between neutral fiber functors of $FConn(X)$ and section to ϵ (up to conjugations by $\pi_1(\bar{X}, \bar{x})$).

Answer questions (b), (c) of section conjecture.
Case X/k smooth, char $k = 0$

Compare with Grothendieck group (Esnault-Hai, 2008)

- Compare with Grothendieck fundamental group
 - $\pi_1(\tilde{X}, \tilde{x}) \cong \Pi(X)^A(\tilde{k})$
 - $\pi_1(X, \bar{x}) \cong \Pi_s(X, \bar{x})(\bar{k})$
- Compatibility with $\text{Gal}(\bar{k}/k)$

Consequence: there is one-one correspondence between neutral fiber functors of $\text{FConn}(X)$ and section to ϵ (up to conjugations by $\pi_1(\tilde{X}, \tilde{x})$).

\Rightarrow answer questions (b), (c) of section conjecture.
Case X/k smooth, $\text{char} k = 0$

Compare with Grothendieck fundamental group (Esnault-Hai, 2008)

- Compare with Grothendieck fundamental group
 - $\pi_1(\bar{X}, \bar{x}) \cong \Pi(X)^\Delta(\bar{k})$
 - $\pi_1(X, \bar{x}) \cong \Pi_s(X, \bar{x})(\bar{k})$

- Compatibility with $\text{Gal}(\bar{k}/k)$
 - For $\Pi = \text{Spec} \bar{k} \times \text{Spec} \bar{k}$ then $(\text{Spec} \bar{k} \times \text{Spec} \bar{k})(\bar{k}) = \text{Gal}(\bar{k}/k)$
Case X/k smooth, char $k = 0$

Compare with Grothendieck group (Esnault-Hai, 2008)

- Compare with Grothendieck fundamental group
 - $\pi_1(\tilde{X}, \tilde{x}) \cong \Pi(X)^{\Delta}(\bar{k})$
 - $\pi_1(X, \tilde{x}) \cong \Pi_s(X, \tilde{x})(\bar{k})$

- Compatibility with $\text{Gal}(\bar{k}/k)$
 - For $\Pi = \text{Spec}\bar{k} \times \text{Spec}\bar{k}$ then $(\text{Spec}\bar{k} \times \text{Spec}\bar{k})(\bar{k}) = \text{Gal}(\bar{k}/k)$
 - $(t, s) : \Pi \to \text{Spec}\bar{k} \times \text{Spec}\bar{k} \Rightarrow \Pi_s(\bar{k}) \to \text{Gal}(\bar{k}/k)$

\[\Rightarrow \] Comutative diagram of exact lines
\[\Rightarrow \] Consequence: there is one-one correspondence between neutral fiber functors of $\text{FConn}(X)$ and section to ϵ (up to conjugations by $\pi_1(\tilde{X}, \tilde{x})$).\[\Rightarrow \] answers questions (b), (c) of section conjecture.
Case X/k smooth, $\text{char } k = 0$

Compare with Grothendieck group (Esnault-Hai, 2008)

- Compare with Grothendieck fundamental group
 - $\pi_1(\bar{X}, \bar{x}) \cong \Pi(X)^A(\bar{k})$
 - $\pi_1(X, \bar{x}) \cong \Pi_s(X, \bar{x})(\bar{k})$

- Compatibility with $\text{Gal}(\bar{k}/k)$
 - For $\Pi = \text{Spec}\bar{k} \times \text{Spec}\bar{k}$ then $(\text{Spec}\bar{k} \times \text{Spec}\bar{k})(\bar{k}) = \text{Gal}(\bar{k}/k)$
 - $(t, s): \Pi \rightarrow \text{Spec}\bar{k} \times \text{Spec}\bar{k} \Rightarrow \Pi_s(\bar{k}) \rightarrow \text{Gal}(\bar{k}/k)$

\[\Rightarrow\] Commutative diagram of exact lines

\[
\begin{array}{ccc}
\Pi(\bar{X}, \bar{x})(\bar{k}) & \longrightarrow & \Pi_s(\bar{k}) \\
\downarrow & & \downarrow \\
\pi_1(\bar{X}, \bar{x}) & \longrightarrow & \pi_1(X, \bar{x}) \xrightarrow{\epsilon} \text{Gal}(\bar{k}/k)
\end{array}
\]
Case X/k smooth, char$k = 0$

Compare with Grothendieck group (Esnault-Hai, 2008)

- Compare with Grothendieck fundamental group
 - $\pi_1(\bar{X}, \bar{x}) \cong \Pi(X)^{\Delta}(\bar{k})$
 - $\pi_1(X, \bar{x}) \cong \Pi_s(X, \bar{x})(\bar{k})$

- Compatibility with $\text{Gal}(\bar{k}/k)$
 - For $\Pi = \text{Spec}\bar{k} \times \text{Spec}\bar{k}$ then $(\text{Spec}\bar{k} \times \text{Spec}\bar{k})(\bar{k}) = \text{Gal}(\bar{k}/k)$
 - $(t, s) : \Pi \to \text{Spec}\bar{k} \times \text{Spec}\bar{k} \Rightarrow \Pi_s(\bar{k}) \to \text{Gal}(\bar{k}/k)$

Commutative diagram of exact lines

\[
\begin{array}{ccc}
\Pi(\bar{X}, \bar{x})(\bar{k}) & \longrightarrow & \Pi_s(\bar{k}) \\
\downarrow & = & \downarrow \\
\pi_1(\bar{X}, \bar{x}) & \longrightarrow & \pi_1(X, \bar{x}) \rightarrow^\epsilon \text{Gal}(\bar{k}/k)
\end{array}
\]

- Consequence:
Case X/k smooth, char $k = 0$

Compare with Grothendieck group (Esnault-Hai, 2008)

- Compare with Grothendieck fundamental group
 - $\pi_1(\bar{X}, \bar{x}) \cong \Pi(X)^{\Delta}(\bar{k})$
 - $\pi_1(X, \bar{x}) \cong \Pi_s(X, \bar{x})(\bar{k})$

- Compatibility with $\text{Gal}(\bar{k}/k)$
 - For $\Pi = \text{Spec}\bar{k} \times \text{Spec}\bar{k}$ then $(\text{Spec}\bar{k} \times \text{Spec}\bar{k})(\bar{k}) = \text{Gal}(\bar{k}/k)$
 - $(t, s) : \Pi \to \text{Spec}\bar{k} \times \text{Spec}\bar{k} \Rightarrow \Pi_s(\bar{k}) \to \text{Gal}(\bar{k}/k)$

\[\begin{array}{ccc}
\Pi(\bar{X}, \bar{x})(\bar{k}) & \longrightarrow & \Pi_s(\bar{k}) \\
\longdownarrow & & \longdownarrow \\
\pi_1(\bar{X}, \bar{x}) & \longrightarrow & \pi_1(X, \bar{x}) \\
\epsilon & \longrightarrow & \text{Gal}(\bar{k}/k)
\end{array} \]

\[\cong \]

- Commutative diagram of exact lines

- Consequence:
 - there is one-one correspondence between neutral fiber functors of $\text{FConn}(X)$ and section to ϵ (up to conjugations by $\pi_1(\bar{X}, \bar{x})$).
Case X/k smooth, char$k = 0$

Compare with Grothendieck group (Esnault-Hai, 2008)

- Compare with Grothendieck fundamental group
 - $\pi_1(\bar{X}, \bar{x}) \cong \Pi(X)^{\Delta}(\bar{k})$
 - $\pi_1(X, \bar{x}) \cong \Pi_s(X, \bar{x})(\bar{k})$

- Compatibility with $\text{Gal}(\bar{k}/k)$
 - For $\Pi = \text{Spec}\bar{k} \times \text{Spec}\bar{k}$ then $(\text{Spec}\bar{k} \times \text{Spec}\bar{k})(\bar{k}) = \text{Gal}(\bar{k}/k)$
 - $(t, s): \Pi \to \text{Spec}\bar{k} \times \text{Spec}\bar{k} \Rightarrow \Pi_s(\bar{k}) \to \text{Gal}(\bar{k}/k)$

\leadsto Commutative diagram of exact lines

\[
\begin{array}{ccc}
\Pi(\bar{X}, \bar{x})(\bar{k}) & \longrightarrow & \Pi_s(\bar{k}) \\
\downarrow & & \downarrow \\
\pi_1(\bar{X}, \bar{x}) & \longrightarrow & \pi_1(X, \bar{x}) \rightarrow \epsilon \rightarrow \text{Gal}(\bar{k}/k)
\end{array}
\]

- Consequence:
 - there is one-one correspondence between neutral fiber functors of $\text{FConn}(X)$ and section to ϵ (up to conjugations by $\pi_1(\bar{X}, \bar{x})$).
 - \leadsto answer questions (b), (c) of section conjecture.
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \bar{k}$

Π^{Str} (Dos Santos)

- Idea: apply Tannaka duality to stratified (flat) bundles
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \overline{k}$

Π^{Str} (Dos Santos)

- Idea: apply Tannaka duality to stratified (flat) bundles
- **Stratified bundles** (Gieseker)
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \bar{k}$

Π^Str (Dos Santos)

- Idea: apply Tannaka duality to stratified (flat) bundles
- **Stratified bundles (Gieseker)**
 - Stratified bundles: coherent \mathcal{O}_X-module with action of the algebra \mathcal{D}_X of differential operators on \mathcal{O}_X.
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \overline{k}$

Π^{Str} (Dos Santos)

- Idea: apply Tannaka duality to stratified (flat) bundles
- **Stratified bundles (Gieseker)**
 - Stratified bundles: coherent \mathcal{O}_X-module with action of the algebra \mathcal{D}_X of differential operators on \mathcal{O}_X.
 - \mathcal{D}_X contains first order differential operator but may not be generated by those
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \bar{k}$

Π^{Str} (Dos Santos)

- **Idea:** apply Tannaka duality to stratified (flat) bundles
- **Stratified bundles (Gieseker)**
 - Stratified bundles: coherent \mathcal{O}_X-module with action of the algebra \mathcal{D}_X of differential operators on \mathcal{O}_X.
 - \mathcal{D}_X contains first order differential operator but may not be generated by those.
 - \leadsto stratified bundles are connections having infinite Frobenius descents.
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \bar{k}$

Π^{Str} (Dos Santos)

- Idea: apply Tannaka duality to stratified (flat) bundles
- **Stratified bundles (Gieseker)**
 - Stratified bundles: coherent \mathcal{O}_X-module with action of the algebra \mathcal{D}_X of differential operators on \mathcal{O}_X.
 - \mathcal{D}_X contains first order differential operator but may not be generated by those
 - \rightsquigarrow stratified bundles are connections having infinite Frobenius descents
- Equivalent definition: flat bundles
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \bar{k}$

π^Str (Dos Santos)

- Idea: apply Tannaka duality to stratified (flat) bundles
- **Stratified bundles (Gieseker)**
 - Stratified bundles: coherent \mathcal{O}_X-module with action of the algebra \mathcal{D}_X of differential operators on \mathcal{O}_X.
 - \mathcal{D}_X contains first order differential operator but may not be generated by those
 - \leadsto stratified bundles are connections having infinite Frobenius descents
- Equivalent definition: flat bundles
 - Family of vector bundles $\mathcal{E} = (E_0, E_1, ...)$, $\sigma_i : E_i \cong F^*E_{i+1}$ isomorphisms of vector bundles (F absolute Frobenius)
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \bar{k}$

Π^{Str} (Dos Santos)

- Idea: apply Tannaka duality to stratified (flat) bundles
- **Stratified bundles (Gieseker)**
 - Stratified bundles: coherent \mathcal{O}_X-module with action of the algebra \mathcal{D}_X of differential operators on \mathcal{O}_X.
 - \mathcal{D}_X contains first order differential operator but may not be generated by those
 - \rightsquigarrow stratified bundles are connections having infinite Frobenius descents
- Equivalent definition: flat bundles
 - Family of vector bundles $\mathcal{E} = (E_0, E_1, ...)$, $\sigma_i : E_i \cong F^*E_{i+1}$ isomorphisms of vector bundles (F absolute Frobenius)
- $\Pi^{\text{Str}}(X, x)$: apply Tannaka duality to $\text{Str}(X)$ and fiber functor at a point $x \in X(k)$.
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \bar{k}$

Π^Str (Dos Santos)

- Properties:
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \bar{k}$

Π^{Str} (Dos Santos)

Properties:
- $\Pi^{\text{Str}}(X, x)$ is a smooth (pro-algebraic) group scheme
Case X/k smooth, char$(k) = p > 0$, $k = \bar{k}$

Π^{Str} (Dos Santos)

Properties:

- $\Pi^{Str}(X, x)$ is a smooth (pro-algebraic) group scheme
- The pro-finite quotient $\Pi^{FStr}(X, x)$ is pro-étale
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \overline{k}$

Π_{Str} (Dos Santos)

- **Properties:**
 - $\Pi_{\text{Str}}(X, x)$ is a smooth (pro-algebraic) group scheme
 - The pro-finite quotient $\Pi_{F\text{Str}}(X, x)$ is pro-étale
 - Assuming X is complete, then $\Pi_{\text{Str}}(X, x)$ has no unipotent quotients, on the other hand $\Pi_{F\text{Str}}$ coincides with the pro-étale quotient of Nori’s fundamental group

Questtion: describe the local part? (Gieseker) does $\Pi_{F\text{Str}} = 1$ imply $\Pi_{\text{Str}} = 1$ toward an answer (Dos Santos, Esnault-Hai): $\Pi_{F\text{Str}} = 1$ implies Π_{Str} has no solvable quotients
Case X/k smooth, char$(k) = p > 0, k = \bar{k}$

Π^{Str} (Dos Santos)

- **Properties:**
 - $\Pi^{\text{Str}}(X, x)$ is a smooth (pro-algebraic) group scheme
 - The pro-finite quotient $\Pi^{\text{FStr}}(X, x)$ is pro-étale
 - Assuming X is complete, then $\Pi^{\text{Str}}(X, x)$ has no unipotent quotients, on the other hand Π^{FStr} coincides with the pro-étale quotient of Nori’s fundamental group

- **Question:**

 \(Gieseker\) does $\Pi^{\text{FStr}} = 1$ imply $\Pi^{\text{Str}} = 1$ toward an answer (Dos Santos, Esnault-Hai): $\Pi^{\text{FStr}} = 1$ implies Π^{Str} has no solvable quotients
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \bar{k}$

Π^{Str} (Dos Santos)

- **Properties:**
 - $\Pi^{\text{Str}}(X, x)$ is a smooth (pro-algebraic) group scheme
 - The pro-finite quotient $\Pi^{\text{FStr}}(X, x)$ is pro-étale
 - Assuming X is complete, then $\Pi^{\text{Str}}(X, x)$ has no unipotent quotients, on the other hand Π^{FStr} coincides with the pro-étale quotient of Nori’s fundamental group

- **Question:**
 - describe the local part?
Case X/k smooth, $\text{char}(k) = p > 0$, $k = \bar{k}$

Π^{Str} (Dos Santos)

Properties:

- $\Pi^{\text{Str}}(X, x)$ is a smooth (pro-algebraic) group scheme
- The pro-finite quotient $\Pi^{\text{FStr}}(X, x)$ is pro-étale
- Assuming X is complete, then $\Pi^{\text{Str}}(X, x)$ has no unipotent quotients, on the other hand Π^{FStr} coincides with the pro-étale quotient of Nori’s fundamental group

Question:

- describe the local part?
- (Gieseker) does $\Pi^{\text{FStr}} = 1$ imply $\Pi^{\text{Str}} = 1$
Case X/k smooth, char$(k) = p > 0$, $k = \bar{k}$

Π^{Str} (Dos Santos)

Properties:
- $\Pi^{\text{Str}}(X, x)$ is a smooth (pro-algebraic) group scheme
- The pro-finite quotient $\Pi^{\text{FStr}}(X, x)$ is pro-étale
- Assuming X is complete, then $\Pi^{\text{Str}}(X, x)$ has no unipotent quotients, on the other hand Π^{FStr} coincides with the pro-étale quotient of Nori’s fundamental group

Question:
- describe the local part?
- (Gieseker) does $\Pi^{\text{FStr}} = 1$ imply $\Pi^{\text{Str}} = 1$?
 toward an answer (Dos Santos, Esnault-Hai): $\Pi^{\text{FStr}} = 1$ implies Π^{Str} has no solvable quotients
Thank you!
Thank you!

Kamsahamnida!
Thank you!

Kamsahamnida!