KAIST, November 7, 2008

Lecture II

Manifolds as the fixed point sets

Krzysztof Pawałowski
UAM Poznań, Poland
Let G be a compact Lie group acting smoothly on a smooth manifold M. Then the set

$$F = \{ x \in M : gx = x \text{ for all } g \in G \}$$

of points fixed under the action of G is a smooth submanifold of M such that $\partial M \cap F = \partial F$.

In particular, if $\partial M = \emptyset$, then $\partial F = \emptyset$.

Moreover, if M is compact, so is F.

Basic question. Given compact Lie group G, which smooth manifolds F occur as the fixed point sets of smooth action of G on smooth manifolds M with prescribed properties?

We focus on the situation M is contractible, and in particular, we deal with the cases where M is a disk or Euclidean space.
Henceforth, we say that a smooth manifold F is \textit{stably complex} if the tangent bundle τ_F of F admits a complex structure, possibly, after adding to τ_F a product bundle $F \times \mathbb{R}^n$, which amounts to saying that F admits a smooth embedding into some Euclidean space and the normal bundle admits a complex structure.

\textbf{Theorem A.} Let G be a finite p-group or its extension by a torus. Then a smooth manifold F is diffeomorphic to M^G for a smooth action of G on a disk (resp. Euclidean space) M if and only if F is compact (resp. $\partial F = \emptyset$) and F is \mathbb{Z}_p-acyclic and stably complex.

\textbf{Theorem B.} Let G be a torus. Then a smooth manifold F is diffeomorphic to M^G for a smooth action of G on a disk (resp. Euclidean space) M if and only if F is \mathbb{Z}-acyclic.
Consider six mutually disjoint classes of finite groups G by assuming that G is not of prime power order and the following holds:

\mathcal{A} : G has a pq-dihedral subquotient.

\mathcal{B} : $G \not\in \mathcal{A}$ and G has a pq-element $g \sim g^{-1}$.

\mathcal{C} : G has a pq-element $g \not\sim g^{-1}$ and $G_2 \ntriangleleft G$.

\mathcal{D} : G has a pq-element $g \not\sim g^{-1}$ and $G_2 \triangleleft G$.

\mathcal{E} : G has no pq-element and $G_2 \ntriangleleft G$.

\mathcal{F} : G has no pq-element and $G_2 \triangleleft G$.
The complexification of real bundles:

\[c_{\mathbb{R}} : \widetilde{KO}(F) \rightarrow \widetilde{K}(F) \]

The quaternionization of complex bundles:

\[q_{\mathbb{C}} : \widetilde{K}(F) \rightarrow \widetilde{KSp}(F) \]

The complexification of symplectic bundles:

\[c_{\mathbb{H}} : \widetilde{KSp}(F) \rightarrow \widetilde{K}(F) \]

The realification of complex bundles:

\[r_{\mathbb{C}} : \widetilde{K}(F) \rightarrow \widetilde{KO}(F) \]

For an abelian group \(A \), let \(\text{qdiv} A \) denote the intersection of the kernels \(\text{Ker} f \) of all homomorphisms \(f \) from \(A \) to free abelian groups. If \(A \) is finitely generated, then \(\text{qdiv} A \) is the subgroup of torsion elements of \(A \).
Theorem C. Let G be a finite group not of prime power order. Then a smooth manifold F is diffeomorphic to M^G for a smooth action of G on a disk (resp. Euclidean space) M if and only if F is compact and $\chi(M) \equiv 1 \pmod{n_G}$ (resp. $\partial F = \emptyset$) and the following holds:

$G \in \mathcal{A} :$ there is no restriction on τ_F in $\widetilde{KO}(F)$.

$G \in \mathcal{B} : c_\mathbb{R}(\tau_F) \in c_\mathbb{H}(\widetilde{KSp}(F)) + q\text{div} \, \widetilde{K}(F)$

$G \in \mathcal{C} : \tau_F \in r_\mathbb{C}(\widetilde{K}(F)) + q\text{div} \, \widetilde{KO}(F)$

$G \in \mathcal{D} : \tau_F \in r_\mathbb{R}(\widetilde{K}(F))$

$G \in \mathcal{E} : \tau_F \in q\text{div} \, \widetilde{KO}(F)$

$G \in \mathcal{F} : \tau_F \in r_\mathbb{C}(q\text{div} \, \widetilde{K}(F))$.