$K_{2i}O_F$ for \mathbb{Z}_p-extension

Hourong Qin

Joint work with

Qingzhong Ji

Department of Mathematics
Nanjing University, Nanjing, P.R.China
Outline:

- Iwasawa’s Theorem
- Iwasawa’s Theorem for $K_{2n}O_F$
- Some Lemmas on Λ-modules
- The order of the p-primary part of $K_{2i}(O_{F_n})$
- K-groups and ideal class groups
Iwasawa’s Theorem

We recall a classical result from Iwasawa Theory.

Let F be a number field. For a prime p, let F_∞/F be the cyclotomic \mathbb{Z}_p-extension and let F_n be the unique intermediate field for F_∞/F such that $[F_n : F] = p^n$, $n \geq 0$. Let p^{e_n} be the exact power of p diving the class number of F_n.
Iwasawa’s Theorem. There exist integers $\lambda \geq 0, \mu \geq 0$ and ν, all independent of n, and an integer n_0 such that, for all $n \geq n_0$,

$$e_n = \lambda n + \mu p^n + \nu.$$
Iwasawa’s Theorem for $K_{2n} O_F$

Let F be a number field.

Assume that $\mu_p \subset F$ if $p > 2$ and $\mu_4 \subset F$ if $p = 2$.

Let M be the maximal abelian p-extension of F_∞ unramified outsider p.
Theorem. For any \(i \geq 1 \), there exist integers \(n_i \) and \(\nu_i \) such that, for all \(n \geq n_i \),

\[
e(i)_n = \lambda n + \mu p^n + \nu_i,
\]

where \(p^{e(i)_n} = \#K_{2i}(O_{F_n})\{p\} \), \(\lambda \) and \(\mu \) are the classical Iwasawa invariants of the \(\Lambda \)-module \(\text{Gal}(M/F_\infty) \) independent of \(i \) and \(n \), and \(\nu_i \) is a constant independent of \(n \).

Remark. J. Coates, On \(K_2 \) and classical conjectures in algebraic number theory, Ann. Math., 95(1972), pp.99-116, proves the same assertion for \(i = 1 \).
Some Lemmas on Λ-modules

Let F be a number field with degree d.

Assume that

$\mu_p \subset F$ if $p > 2$ and $\mu_4 \subset F$ if $p = 2$.

Let q_0 be the largest power of p such that $\mu_{q_0} \subset F$.

Put $q_n = q_0 p^n$.

Write $F_n = F(\mu_{q_n})$ and $F_\infty = \bigcup_{n \geq 0} F_n$.
Then F_{∞}/F is a \mathbb{Z}_p-extension, and as usual, we write $\Gamma = \text{Gal}(F_{\infty}/F)$, $\Gamma_n = \text{Gal}(F_{\infty}/F_n)$. Let

$$\kappa : \Gamma \longrightarrow 1 + q_0\mathbb{Z}_p$$

be the isomorphism determined by

$$\gamma(\zeta) = \zeta^{\kappa(\gamma)}, \quad \text{for all } \zeta \in W = \bigcup_{n \geq 0} \mu_{p^n}, \quad \gamma \in \Gamma.$$

Let $\Lambda = \mathbb{Z}_p[[T]]$ be the ring of formal power series in an indeterminate T with coefficients in \mathbb{Z}_p. Choose, once and for all, a topological generator γ_0 of Γ. Then each compact Γ-module X admits a unique structure of compact Λ-module such that

$$(1 + T)x = \gamma_0 x$$

for every x in X.
Let $\iota : \Lambda \to \Lambda$ be the automorphism given by

$$\iota\left(\sum_{m=0}^{\infty} c_m T^m \right) = \sum_{m=0}^{\infty} c_m \left(\kappa(\gamma_0)/(1 + T) - 1 \right)^m.$$

Given any Λ-module Y, denote by Y^\bullet the Λ-module with the same underlying group as Y but with Λ-module structure obtained from that of Y by composition with ι.
Let M be a Γ-module.

As \mathbb{Z}_p-module $M[n]$ is M;

γ action on $M[n]$ is given by the following:

For any $\gamma \in \Gamma$ and $x \in M$, $\gamma \ast x = \kappa(\gamma)^n \gamma(x)$.

Thus $M[n]$ is isomorphic to $M(n)$ as Γ-modules.

For any $n \in \mathbb{Z}$, we put

$$T^*_n = \kappa(\gamma_0)^n (1 + T) - 1.$$
Lemma 3.1. Let $\omega_n(T) = (1 + T)^{p^n} - 1$. For any non-zero element $g(T) \in \Lambda$, let M denote the Λ-module $\Lambda/(g(T))$. And let $h : M \rightarrow M$ be the Λ-homomorphism given by multiplication by $\omega_n(T)$.

(1) (Lichtenbaum) $M[m]$ is isomorphic to $\Lambda/(g(T_{(m)}^*))$ as Λ-module.

(2) h has a finite cokernel if and only if $\prod_{i=0}^n g(\zeta_{p^i} - 1) \neq 0$, and, if $\prod_{i=0}^n g(\zeta_{p^i} - 1) \neq 0$, the order of the cokernel is $\prod_{i=0}^n |g(\zeta_{p^i} - 1)|_{v_i}^{-1}$,
where the valuation $| \cdot |_{v_i}$ is the standard valuation of the field $\mathbb{Q}_p(\zeta_{p^i})$ such that $|\zeta_{p^i} - 1|_{v_i} = 1/p$ for all $i \geq 1$, and $| \cdot |_{v_0} = | \cdot |_p$ on \mathbb{Q}_p such that $|p|_p = 1/p$.

(3) h is injective if $\prod_{i=0}^{n} g(\zeta_{p^i} - 1) \neq 0$ or its kernel is infinite if $\prod_{i=0}^{n} g(\zeta_{p^i} - 1) = 0$.
Lemma 3.2. For all \(h(T) \in \Lambda \) such that \(h(T) \) and \(\omega_n(T) \) are relatively prime, we have

\[
\# \frac{\Lambda}{(\omega_n(T), h(T))} = \prod_{i=0}^{n} |h(\zeta p^i - 1)|^{-1}_{v_i}.
\]
Let M be a discrete Λ-module.

\[\hat{M} = \text{Hom}_{\mathbb{Z}_p}(M, \mathbb{Q}_p/\mathbb{Z}_p) \] with Λ-action given by the following formula:

For $\lambda \in \Lambda$, $y \in M$, $\varphi \in \text{Hom}_{\mathbb{Z}_p}(M, \mathbb{Q}_p/\mathbb{Z}_p)$,

\[(\lambda \varphi)(y) = \varphi(\lambda y). \]
Lemma 3.3. Let M be a discrete Λ-module and assume that its Pontryagin dual \widehat{M} is a finitely generated torsion Λ-module with no non-trivial finite Λ-submodule, and the following sequence is exact:

$$0 \rightarrow \widehat{M} \rightarrow \bigoplus_{j=1}^{r} \Lambda/(f_{j}(T)) \rightarrow D \rightarrow 0$$

where D is a finite Λ-module. Put $f(T) = \prod_{j=1}^{r} f_{j}(T)$. Then the following assertions are equivalent for all integers m and $n \geq 0$:

(i) $M(m)\Gamma_{n}$ is finite,
(ii) $M(m)\Gamma_{n} = 0$,

(iii) $\prod_{i=0}^{n} f(\kappa(\gamma_{0})^{-m} \zeta_{p^{i}} - 1) \neq 0$.

If these assertions are valid, then the order of $M(m)\Gamma_{n}$ is

$$\prod_{i=0}^{n} |f(\kappa(\gamma_{0})^{-m} \zeta_{p^{i}} - 1)|_{v_{i}}^{-1}.$$
The order of the p-primary part of $K_{2i}(O_{F_n})$

I_n (resp. I): the free abelian group generated by the primes of F_n (resp. F_∞) which do not lie above p.

P_n (resp. P): the subgroup of principal p-ideals in I_n (resp. I).

$C_n = I_n/P_n$ (resp. $C = I/P$).

C_n (resp. C): the p-primary component of C_n (resp. C).

O_F: the ring of integers in F.

$\mathcal{O}_0 = O_F[\frac{1}{p}]$ and \mathcal{O}_n (resp. \mathcal{O}) is the algebraic closure of \mathcal{O}_0 in F_n (resp. F_∞).
\(\mathcal{U}_n \) (resp. \(\mathcal{U} \)): the group of all \(p \)-units in \(F_n \) (resp. \(F_\infty \)), i.e., the multiplicative group of the ring \(\mathcal{O}_n \) (resp. \(\mathcal{O} \)).

Then we have

\[I = \lim_{\leftarrow} I_n, \quad \mathcal{C} = \lim_{\leftarrow} C_n, \quad \mathcal{C} = \lim_{\leftarrow} \mathcal{C}_n, \quad \mathcal{U} = \lim_{\leftarrow} \mathcal{U}_n. \]

There is a well defined surjective homomorphism

\[\psi : (\mathbb{Q}_p/\mathbb{Z}_p) \otimes_{\mathbb{Z}} F_\infty^{\times} \longrightarrow (\mathbb{Q}_p/\mathbb{Z}_p) \otimes_{\mathbb{Z}} I. \]

We define \(\mathcal{M} \) to be its kernel.

Thus we have the exact sequence

\[0 \longrightarrow \mathcal{M} \longrightarrow (\mathbb{Q}_p/\mathbb{Z}_p) \otimes_{\mathbb{Z}} F_\infty^{\times} \longrightarrow (\mathbb{Q}_p/\mathbb{Z}_p) \otimes_{\mathbb{Z}} I \longrightarrow 0. \]
Lemma 4.1. (Soule) For any integer $i \geq 2$, one has

$$\mathcal{M}(i - 1)\Gamma_n = 0;$$

$$\mathcal{M}(i - 1)\Gamma_n = H^1(\mathcal{O}, W^{(i)})\Gamma_n$$

$$= H^1(\mathcal{O}_n, W^{(i)}) = (\mathbb{Q}_p / \mathbb{Z}_p)^{p^nd/2} \oplus G_{n,i},$$

where $G_{n,i}$ is a finite group.
Lemma 4.2. For any integers \(n \geq 0 \) and \(i \geq 1 \), we have

\[
K_{2i}(O_{F_n})\{p\} \cong G_{n,i+1}.
\]

This follows from

(1) \[
\mathcal{M}(i - 1)^{\Gamma_n} = (\mathbb{Q}_p/\mathbb{Z}_p)^{p^{n_d}/2} \oplus G_{n,i} \quad \text{(Soule)}.
\]

(2) Let \(O_S \) be the ring of \(S \)-integers in a number field \(F \) with some set \(S \) of finite places of \(F \). If \(p \) is a prime, then

\[
K_{2i}(O_S)\{p\} \cong H^2(O_S[\frac{1}{p}], \mathbb{Z}_p(i + 1))
\]
(Voevodsky, Rost, Suslin,..., See for example, C. Weibel’s paper in Handbook of K-Theory, editors: E.M.Friedlander and D.R.Grayson, Springer 2005.)

(3) For all integers $n \geq 0$ and $i \geq 2$,

$$H^2(\mathcal{O}_n, \mathbb{Z}_p(i)) \cong H^1(\mathcal{O}_n, W^{(i)})/H^1(\mathcal{O}_n, W^{(i)})_{\text{div}}.$$

(4)

$$H^2(\mathcal{O}_n, \mathbb{Z}_p(i + 1)) \cong K_{2i}(\mathcal{O}_n)\{p\}$$

and

$$K_{2i}(O_{F_n})\{p\} \cong K_{2i}(\mathcal{O}_n)\{p\}.$$
Let $f(T)$ be the characteristic polynomial of the Λ-module $\text{Gal}(M/F_\infty)^\bullet$.

Theorem 4.3. For any $n \geq 0$ and $i \geq 1$, we have

$$\#K_{2i}(O_{F_n})\{p\} = \#H(i)^{\Gamma^n} \cdot \prod_{j=0}^n |f(\kappa(\gamma_0)^{-i}\zeta_{p^j} - 1)|_{v_j}^{-1},$$

where

$$H = \frac{\Lambda^{d/2}}{\text{Gal}(M/F_\infty)^\bullet/t(\text{Gal}(M/F_\infty)^\bullet)}$$

is a finite Λ-module.
Corollary 4.4. If $S(F_∞/F) = 1$, i.e., $F_∞$ has only one prime divisor which is ramified for extension $F_∞/F$. Then for all integers $n \geq 0$ and $i \geq 1$, we have

$$\#K_{2i}(O_{F_n})\{p\} = \#H(i)^n \cdot \prod_{j=0}^{n} |h(\kappa(\gamma_0)^{-i} \zeta_{p^j} - 1)|_{v_j}^{-1},$$

where $h(T)$ is the characteristic polynomial of the Pontryagin dual of \mathcal{C}.
Note that H finite implies, for sufficiently large n, $H(i)\Gamma^n = H(i)$. So we have the following.

Corollary 4.5. Let $i \geq 1$. Then for sufficiently large n, we have

$$\#K_{2i}(O_{F_n})\{p\} = \#H \cdot \prod_{j=0}^{n} |f(\kappa(\gamma_0)^{-i} \zeta_{p^j} - 1)|_{v_j}^{-1}.$$

Corollary 4.6. The finite group H is trivial if and only if there exists integer $i \geq 1$ such that

$$\#K_{2i}(O_F)\{p\} = |f(\kappa(\gamma_0)^{-i} - 1)|_p^{-1}.$$
Theorem 4.7. (1) For any $i \geq 1$, if $K_{2i}(O_F)\{p\} = 0$, then $K_{2i}(O_{F_n})\{p\} = 0$, for all $n \geq 0$.

(2) For any $i \geq 1$, there exist integers n_i and ν_i such that, for all $n \geq n_i$,

$$e(i)_n = \lambda n + \mu p^n + \nu_i,$$

where $p^{e(i)_n} = \# K_{2i}(O_{F_n})\{p\}$, λ and μ are the classical Iwasawa invariants of the Λ-module $\text{Gal}(M/F_\infty)$ independent of i and n, and ν_i is a constant independent of n.
K-groups and ideal class groups

In this section,

$p :$ an odd prime number;

$F = \mathbb{Q}(\zeta_p)$ the p-th cyclotomic field;

$F_n = \mathbb{Q}(\zeta_{p^{n+1}})$;

$F_\infty = \bigcup_{n \geq 0} F_n$;

$F^+ = \mathbb{Q}(\zeta_p)^+$;

$\Delta = \text{Gal}(F/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^\times$;
\(\omega: \) the Teichmuller character;

\[\Delta = \{ \omega^i | 0 \leq i \leq p - 2 \}; \]

\[\varepsilon_i = \frac{1}{p-1} \sum_{a=1}^{p-1} \omega^i(a) \sigma_a^{-1}, \quad 0 \leq i \leq p - 2; \]

\[\varepsilon_- = \frac{1-\sigma-1}{2} = \sum_{i \text{ odd}} \varepsilon_i; \]

\[\varepsilon_+ = \frac{1+\sigma-1}{2} = \sum_{i \text{ even}} \varepsilon_i; \]

For an \(\mathbb{Z}_p[\Delta]\)-module \(A\),

\[A(i) = \varepsilon_i A; \]

\[A^- = \varepsilon_- A; \]

\[A^+ = \varepsilon_+ A. \]
Recall that M is the maximal abelian p-extension of F_{∞} unramified outsider p. Let L denote the maximal unramified abelian p-extension over F_{∞} in M. Let N' be the field generated over F_{∞} by the p^{a}-th roots of all elements ε in U for all integers $a \geq 0$.

K. Iwasawa, On \mathbb{Z}_l-extensions of algebraic number fields, Ann. Math. 98(1973), 246-326, shows the following:

(1) $\text{Gal}(M/N')^\bullet$ is isomorphic to the Pontryagin dual of \mathcal{C} and it is a Noetherian torsion Λ-module with no non-trivial finite Λ-submodule.

(2) $\text{Gal}(N'/F_{\infty})^\bullet$ is isomorphic to the Pontryagin dual of \mathcal{C}, which is a torsion free \mathbb{Z}_p-module and is contained as a Λ-submodule of finite index in an elementary Λ-module of the form

$$\Lambda^{d/2} \oplus M$$
where $M = \bigoplus_{j=1}^{t} \Lambda/(g_j(T))$.

(3) Then the Galois group $\text{Gal}(M/F_\infty)$ is a Noetherian Λ-module and has no non-trivial finite Λ-submodule. We have

$$0 \rightarrow \text{Gal}(M/F_\infty)^\bullet/t(\text{Gal}(M/F_\infty)^\bullet) \rightarrow \Lambda^{d/2} \rightarrow H \rightarrow 0.$$
Now assume that $F = \mathbb{Q}(\zeta_p)$.

Let K_n be the maximal unramified abelian p-extension over F_n and L_n be the maximal abelian extension over F_n in M. Write

$$\omega_n = \omega_n(T) = (1 + T)^{p^n} - 1.$$

Then we have the following:

(i) $S(F_\infty/F) = 1$.

(ii) C_n is also the ideal class group of F_n. And C_n is also the p-primary subgroup of the ideal class group of F_n.
(iii)

\[L_n = F_\infty K_n, \]

\[\omega_n \text{Gal}(L/F_\infty) = \text{Gal}(L/L_n) \]

\[(\text{Gal}(L/F_\infty))_{\Gamma_n} = \text{Gal}(L/F_\infty)/\omega_n \text{Gal}(L/F_\infty) \]

\[\cong \text{Gal}(L_n/F_\infty) \cong \text{Gal}(K_n/F_n) \cong \mathfrak{c}_n. \]

(iv)

\[\text{Gal}(M/N')^\bullet \cong \text{Hom}(\mathfrak{c}, \mathbb{Q}_p/\mathbb{Z}_p) \cong \alpha(\text{Gal}(L/F_\infty)) \sim \text{Gal}(L/F_\infty), \]

where \(\alpha(\text{Gal}(L/F_\infty)) \) is the adjoint of \(\text{Gal}(L/F_\infty) \) and \(\sim \) means pseudo-isomorphism.
(v) Let Y be the Pontryagin dual of \mathcal{E}. Then

$$Y \cong \text{Gal}(N'/F_\infty)^\bullet$$

and there is an exact sequence:

$$0 \rightarrow Y \rightarrow \Lambda \frac{p-1}{2} \rightarrow H \rightarrow 0,$$

where

$$H = \frac{\Lambda \frac{p-1}{2}}{\text{Gal}(M/F_\infty)^\bullet/t(\text{Gal}(M/F_\infty)^\bullet)}$$

is finite.

(vi) Let $f(T)$ be the characteristic polynomial of $\text{Gal}(L/F_\infty)$. Then $f(T)$ is also the characteristic polynomial of the Λ-module $\text{Gal}(M/N')^\bullet$ and $\text{Gal}(M/F_\infty)^\bullet$.
(vii) Let $X = \text{Gal}(L/F\infty)$. Then X^- has no non-trivial finite Λ-submodule and there are exact sequences:

$$0 \to A_i \to X^{(i)} \to \oplus_{j=1}^{t_i} \Lambda/(f_{i,j}(T)) \to B_i \to 0$$

where A_i and B_i are finite Λ-submodules and $A_i = 0$ if i is odd.

Now set

$$A = \bigoplus_{i \text{ is even}} A_i$$

$$B^+ = \bigoplus_{i \text{ is even}} B_i, \quad B^- = \bigoplus_{i \text{ is odd}} B_i,$$

$$B = B^+ \oplus B^-,$$

$$f_i(T) = \prod_{j=1}^{t_i} f_{i,j}(T),$$
\[f^+ = \prod_{i \text{ is even}} f_i(T), \]
\[f^- = \prod_{i \text{ is odd}} f_i(T), \]
\[\lambda = \lambda(X) = \deg f(T) \]
\[\lambda_i = \lambda(X^{(i)}) = \deg f_i(T), \]
\[\lambda^+ = \lambda(X^+) = \deg f^+(T), \]
\[\lambda^- = \lambda(X^-) = \deg f^-(T), \]

Then
\[f_i(T), \ f^+(T), \ f^-(T) \]
are the characteristic polynomials of the Λ-modules $X^{(i)}$, X^+ and X^-, respectively. So $$f(T) = \prod_{2 \leq i \leq p-2} f_i(T) = f^+(T)f^-(T)$$ and there are exact sequences:

$$0 \to A \to X^+ \to \bigoplus_{i \text{ is even}} t_i \bigoplus_{j=1} \Lambda/(f_{i,j}(T)) \to B^+ \to 0,$$

$$0 \to X^- \to \bigoplus_{i \text{ is odd}} t_i \bigoplus_{j=1} \Lambda/(f_{i,j}(T)) \to B^- \to 0,$$

$$0 \to A \to X \to \bigoplus_{2 \leq i \leq p-2} \bigoplus_{j=1} \Lambda/(f_{i,j}(T)) \to B \to 0.$$
(vi) If Vandiver’s conjecture holds for p, then
\[X^{(i)} = \varepsilon_i X \cong \Lambda/(f(T, \omega^{1-i})) \]
for $i = 3, 5, \ldots, p-2$, where
\[f((1+p)^s - 1, \omega^{1-i}) = L_p(s, \omega^{1-i}). \]
Factor $f(T, \omega^{1-i}) = p^{\mu_i} g_i(T) U_i(T)$ with g_i distinguished if $g_i \neq 1$ and $U_i \in \Lambda^\times$. We know that $\mu_i = 0$. Therefore
\[X^{(i)} \cong \Lambda/(g_i(T)) \]
and
\[X = X^- \cong \bigoplus_{\{i \neq 1 \text{ odd}\}} \Lambda/(g_i(T)). \]

(viii) The finite Λ-module H is trivial if and only if $H^1(\Gamma, \mathcal{U}) = 1$ if and only if Vandiver’s conjecture holds for p which implies A and B are trivial and
Gal\((M/N')^\bullet\) \cong \text{Hom}(\mathcal{C}, \mathbb{Q}_p/\mathbb{Z}_p) \cong \alpha(X) \cong X \cong \bigoplus_{\{i \neq 1 \text{ odd}\}} \Lambda/(g_i(T)).

We can prove that the following exact sequence of \(\Lambda\)-modules:

\[
1 \longrightarrow G(M/N')^\bullet \longrightarrow G(M/F_\infty)^\bullet \longrightarrow G(N'/F_\infty)^\bullet \longrightarrow 1
\]

is split. So, we have

Lemma 5.1. The following sequence of \(\Lambda\)-modules is split:

\[
0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{M} \longrightarrow \mathcal{C} \longrightarrow 0,
\]

where \(\mathcal{E} = \mathcal{U} \otimes \mathbb{Q}_p/\mathbb{Z}_p\).
Lemma 5.2. Let $r \geq 1$ and $n \geq 0$. Then there are the following isomorphism

$$K_{2r}(O_{F_n})\{p\}^{(i)} \cong \mathcal{C}(r)^{\Gamma_n^{(i)}}, \quad i = 3, 5, \ldots, p - 2,$$

and exact sequence of abelian groups

$$0 \rightarrow H(r)^{\Gamma_n} \rightarrow K_{2r}(O_{F_n})\{p\}^+ \rightarrow \mathcal{C}(r)^{\Gamma_n^+} \rightarrow 0.$$
Theorem 5.3. (1) The odd prime number p is regular if and only if there exist integers $i \geq 1$ and $n \geq 0$ such that $K_{2i}(O_{Fn})\{p\}$ is trivial, if and only if for all integers $i \geq 1$ and $n \geq 0$ such that $K_{2i}(O_{Fn})\{p\}$ is trivial.

(2) $\mathfrak{c}_0^{(i)} = 0$ if and only if

$\mathfrak{c}_n^{(i)} = 0$ for some $n \geq 0$ if and only if

$\mathfrak{c}_n^{(i)} = 0$ for all $n \geq 0$,

in the case, $\lambda_i = 0$.

Further more, if i is odd, then $\lambda_i = 0$ implies $\mathfrak{c}_0^{(i)} = 0$.
(3) Let $i = 3, 5, \cdots, p - 2$. Then

$K_{2r}(O_{F_0})\{p\}^{(i)} = 0$ if and only if

$K_{2r}(O_{F_n})\{p\}^{(i)} = 0$ for some $n \geq 0$ if and only if

$K_{2r}(O_{F_n})\{p\}^{(i)} = 0$ for all $n \geq 0$ if and only if

$\lambda_i = 0$.

$K_{2r}(O_{F_0})\{p\}^+ = 0$ if and only if

$K_{2r}(O_{F_n})\{p\}^+ = 0$ for some $n \geq 0$ if and only if

$K_{2r}(O_{F_n})\{p\}^+ = 0$ for all $n \geq 0$, and in this case, $\lambda^+ = 0$.
Lemma 5.4. (a) Let \(M = \Lambda/(g(T)) \) with \(g(T) \) a distinguished polynomial and \(g(T) \) and \(\omega_n(T) \) relatively prime. For all integers \(i \geq 1 \) and \(n \geq 0 \), we have

\[
p-rk(M(i)_{\Gamma_n}) = p-rk(M_{\Gamma_n}) = \min\{p^n, \deg(g(T))\}.
\]

Moreover, let \(n_0 \) be the smallest integer such that \(p^{n_0} \geq \deg(g(T)) \). Then there exist integers \(n_1, n_2, \ldots, n_d \), where \(d = \deg(g(T)) \), such that for all \(n \geq n_0 + 1 \), we have

\[
\Lambda/(w_n, g) \cong \bigoplus_{i=1}^d p^{-n-n_i}Z_p/Z_p.
\]

(b) Let \(X \) be a Noetherian torsion \(\Lambda \)-module such that \(\mu(X) = 0 \) and \(X_{\Gamma_n} \) is finite for all \(n \geq 0 \). Then

\[
p-rk(X_{\Gamma_n}) \geq \lambda(X),
\]
\[p\text{-rk}(X(i)\Gamma_n) \geq \lambda(X), \quad n \gg 0. \]

Furthermore, if \(X \) has no finite \(\Lambda \)-submodule, then for any integers \(i \), there exist integers \(n_0, n_1, n_2, \cdots, n\lambda(X), \nu_1, \nu_2, \cdots, \nu\lambda(X) \), such that for all \(n \geq n_0 \), we have

\[p\text{-rk}(X\Gamma_n) = p\text{-rk}(X(i)\Gamma_n) = \lambda(X), \]

and

\[X\Gamma_n \cong \bigoplus_{j=1}^{\lambda(X)} p^{-n-n_j} \mathbb{Z}_p / \mathbb{Z}_p, \]

\[X(i)\Gamma_n \cong \bigoplus_{j=1}^{\lambda(X)} p^{-n-\nu_j} \mathbb{Z}_p / \mathbb{Z}_p. \]
Corollary 5.5. (1) Let \(i = 3, 5, \cdots, p - 2 \) be odd. Then there exist integers \(n_0, n_{i1}, \cdots, n_{i\lambda_i} \) such that for all \(n \geq n_0 \) we have

\[
p-rk(\mathcal{C}_n^{(i)}) = \lambda_i, \quad \mathcal{C}_n^{(i)} \cong \bigoplus_{j=1}^{\lambda_i} p^{-n-n_{ij}}\mathbb{Z}_p/\mathbb{Z}_p,
\]

hence

\[
p-rk(\mathcal{C}_n^-) = \lambda^-,
\]

\[
\mathcal{C}_n^- \cong \bigoplus_{3 \leq i \text{ is odd}} \bigoplus_{j=1}^{\lambda_i} p^{-n-n_{ij}}\mathbb{Z}_p/\mathbb{Z}_p, \quad n \gg 0.
\]

(2) Let \(i = 2, 4, \cdots, p - 3 \) be even. Then there exists integer \(n_0 \) such that for all \(n \geq n_0 \) we have

\[
p-rk(\mathcal{C}_n^{(i)}) \geq \lambda_i, \quad p-rk(\mathcal{C}_n^+) \geq \lambda^+.
\]
(3) Let $r \geq 1$ and $i = 3, 5, \cdots, p - 2$. There exist integers $n_0, n_1, \cdots, n_\lambda$ such that for all $n \geq n_0$, we have the following isomorphisms of abelian groups:

$$K_{2r}(O_{F_n})\{p\}^{(i)} \cong \bigoplus_{j=1}^{\lambda_i} p^{-n-n_j} \mathbb{Z}_p / \mathbb{Z}_p,$$

and

$$K_{2r}(O_{F_n})\{p\}^+ \cong H \bigoplus \bigoplus_{j=1}^{\lambda_+} p^{-n-m_j} \mathbb{Z}_p / \mathbb{Z}_p, \quad n \gg 0,$$

for some integers $m_1, \cdots, m_{\lambda+}$ independent of n.

(4)

$$p\text{-rk}(X_{\Gamma_n}) = p\text{-rk}(H) + p\text{-rk}(\alpha(X)_{\Gamma_n}),$$

hence

$$p\text{-rk}(c_{n^+}) = p\text{-rk}(H) + \lambda^+.$$
Corollary 5.6. Let \(i = 3, 5, \ldots, p - 2 \) be odd. Then \(\lambda_i = 1 \) if and only if \(C_n(i) \) is a cyclic group if and only if \(K_{2r}(O_{F_n})\{p\}(i) \) is a cyclic group, and in this case,

\[
C_n(i) \cong \frac{\mathbb{Z}_p}{(w_n(a_i))},
\]

\[
K_{2r}(O_{F_n})\{p\}(i) \cong \frac{\mathbb{Z}_p}{(w_n((1 + p)^{r(1 + a_i)} - 1))},
\]

where \(a_i \) is the root of the characteristic polynomial of \(X(i) \), i.e.,

\[
f(T, w^{1-i}) = (T - a_i)U_i(T), \quad U_i(T) \in \Lambda^*,
\]

where \(f((1 + p)^s - 1, \omega^{1-i}) = L_p(s, \omega^{1-i}) \).
Corollary 5.7. Let λ denote the Iwasawa λ-invariant of the Λ-module $\text{Gal}(L/F_\infty)$. Then the following statements are equivalent:

(a) Vandiver conjecture holds for p;

(b) The finite Λ-module H in is trivial;

(c) The finite Λ-modules A and B are trivial;

(d) X is an elementary Λ-module;

(e) $\alpha(X) \cong X$;

(f) $p\text{-rk}(X_{\Gamma_n}) = p\text{-rk}(\alpha(X)_{\Gamma_n})$ for some $n \gg 0$;
(g) \(p\text{-rk}(X_{\Gamma_n}) = \lambda \) for some \(n \gg 0 \);

(g') \(p\text{-rk}(X^+_{\Gamma_n}) = \lambda^+ \) for some \(n \gg 0 \);

(h) \(p\text{-rk}(\text{Cl}(O_{F_n})) = \lambda \) for some \(n \gg 0 \);

(h') \(p\text{-rk}(\text{Cl}(O_{F_n}^+)) = \lambda^+ \) for some \(n \gg 0 \);

(j) for any \(i \geq 1 \), \(p\text{-rk}(K_{2i}(O_{F_n})) = \lambda \) for some \(n \gg 0 \);

(j') for any \(i \geq 1 \), \(p\text{-rk}(K_{2i}(O_{F_n}^+)) = \lambda^+ \) for some \(n \gg 0 \).

If these statements hold, then \(\lambda^+ = 0 \), i.e., \(\lambda = \lambda^- \).
Remarks. (1) (Kurihara) $\mathcal{C}_0^{(p-3)}$ always vanishes.

(2) (Soule) $\mathcal{C}_0^{(p-n)}$ is trivial if $\log p > n^{224n^4}$ odd.
Theorem 5.8. Let p be an odd prime and assume Vandiver conjecture holds for p. Let i_1, \ldots, i_s be the even indices i such that $2 \leq i \leq p - 3$ and $p | B_i$. If

$$B_{1, \omega_{i-1}} \not\equiv 0 \mod p^2$$

and

$$\frac{B_i}{i} \not\equiv \frac{B_{i+p-1}}{i+p-1} \mod p^2 \text{ for all } i \in \{i_1, \ldots, i_s\},$$

then

(1)

$$X \cong \bigoplus_{i \in \{i_1, \ldots, i_s\}} \Lambda / (T - \alpha_i),$$

$$c_n \cong (\mathbb{Z}/p^{n+1}\mathbb{Z})^s, \text{ for all } n \geq 0,$$

where $\alpha_i \in p\mathbb{Z}_p$ and $v_p(\alpha_i) = 1$ for all $i \in \{i_1, \ldots, i_s\}$.
(2) For all integers $m \geq 1$ and $n \geq 0$, we have

$$K_{2m}(O_{F_n})\{p\} \cong \bigoplus_{i \in \{i_1, \ldots, i_s\}} \mathbb{Z}/p^{n+1+c_i}$$

where $c_i = \nu_p((1 + p)^m(1 + \alpha_i) - 1) - 1$ for all $i \in \{i_1, \ldots, i_s\}$. In particular, if $m + \frac{\alpha_i}{p} \not\equiv 0 \mod p$ for all $i \in \{i_1, \ldots, i_s\}$, then

$$K_{2m}(O_{F_n})\{p\} \cong \text{Cl}(O_{F_n})\{p\} \cong (\mathbb{Z}/p^{n+1})^s.$$

Here B_i and B_{1,ω^i-1} are respectively the ordinary Bernoulli numbers and the generalized Bernoulli numbers.
Corollary 5.9. Let p be an odd prime and assume Vandiver conjecture holds for p. Let i_1, \cdots, i_s be the even indices which satisfy conditions of Theorem 5.8. Then for all integers $n \geq 0$ and $m \geq 1$ such that $m \not\equiv -\frac{B_{1,\omega^i-1}}{B_{2,\omega^i-2/2-B_{1,\omega^i-1}}}$ (mod p) for all $i \in \{i_1, \cdots, i_s\}$, we have

$$K_{2m}(O_{F_n})\{p\} \cong \text{Cl}(O_{F_n})\{p\} \cong (\mathbb{Z}/p^{n+1}\mathbb{Z})^s.$$