Smooth varieties
dominated by abelian varieties

Jun-Muk Hwang

(Joint work with Ngaiming Mok)
Theme: Finite surjective morphisms between smooth projective varieties are rare.

For any smooth projective variety X of dimension n, we have projections

$$f : X \to \mathbb{P}_n$$

It is expected that for 'general' X, these are essentially the only examples (other than automorphisms). Very few results of this type are known.

How to show that the image is \mathbb{P}_n?

Mori's characterization of \mathbb{P}_n: A smooth uniruled projective variety X is \mathbb{P}_n if all rational curves through some point $x \in X$ have ample normal bundles.
Theorem (1983, Lazarsfeld) (conjectured by Remmert-Van de Ven) Let $f : \mathbb{P}_n \to X$ be a finite morphism onto a smooth projective variety. Then X is \mathbb{P}_n.

$\mathbb{P}_n \xrightarrow{\text{Ram}(f)} \mathbb{C} \xrightarrow{f} X \xrightarrow{\text{Branch}(f)} \mathbb{C}$

N_C is a quotient of N_C, which is ample.

Theorem (1999, Mok-H.) (conj. by Lazarsfeld) Let G be a complex simple Lie group, P be a maximal parabolic subgroup, and $f : G/P \to X$ be a finite morphism onto a smooth projective variety. If $\text{Ram}(f) \neq \emptyset$, X is \mathbb{P}_n.
Question Let $f : A \to X$ be a finite morphism from an abelian variety onto a smooth projective variety with $\text{Ram}(f) \neq \emptyset$. What is the structure of X?

Remark: There are examples with $\text{Ram}(f) = \emptyset$ where X is not an abelian variety (e.g. Igusa).

Theorem (1990, Debarre) (conjectured by Paranjape-Srinivas) Let A be a simple abelian variety and $f : A \to X$ be a finite morphism onto a smooth projective variety. If $\text{Ram}(f) \neq \emptyset$, X is \mathbb{P}_n.

Definition For a curve C in a smooth variety X, let $\text{Ann}(C)$ be the subspace of $H^0(C, T^*(X))$ annihilating tangent vectors to C.

Definition For an irreducible curve $C \subset A$, its toroidal hull $[C]$ is the smallest abelian subvariety whose translate contains C.
Lemma (Zak) If $C \subset A = \mathbb{C}^n / \Lambda$ is tangent to $C^m \subset \mathbb{C}^n$, then $\dim[C] \leq m$.

Corollary For any $C \subset A$,

$$\dim[C] \leq n - \dim \text{Ann}(C).$$

In particular, if A is a simple abelian variety, $\text{Ann}(C) = 0$.

Proof of Debarre's Theorem

Use the same argument as Lazarsfeld's with

Lemma A curve C in a simple abelian variety has ample normal bundle.

Gieseker's criterion for ampleness: If a vector bundle V on a curve is not ample, there exists a rank-1 quotient $V \to L$ with $L \leq 0$.

If N_C is not ample, we have a quotient line bundle $N_C \to L$ with $L \leq 0$. L is a quotient of $T(A)$, which is generated by sections. Thus L is trivial. Then the quotient $N_C \to \mathcal{O}_C$ induces an injection $\mathcal{O}_C \to N_C^*$, which corresponds to a nontrivial element of $\text{Ann}(C)$.
For an abelian variety A and an abelian subvariety A', let $A' \subset T(A)$ be the distribution defined by the translates of A'.

Main Theorem Let A be an abelian variety and $f : A \to X$ be a finite morphism onto a smooth projective variety with $\text{Ram}(f) \neq \emptyset$. Then we have an abelian subvariety $A' \subset A$ of dimension $k > 0$, a smooth projective variety X' and a morphism $g : X \to X'$ so that

$$
\begin{array}{ccc}
A & \xrightarrow{f} & X \\
\downarrow & & \downarrow g \\
A' & \xrightarrow{f'} & X'
\end{array}
$$

where g is a \mathbb{P}_k-fibration whose fibers are images of leaves of A' and f' is a finite surjective morphism.

Thus X has the structure of a tower of projective bundles over a smooth projective variety which admits an etale covering by an abelian variety.
Miyaoka-Mori's criterion for uniruledness: Suppose for a generic point x of a smooth projective variety X, there exists a curve C through x satisfying $K_X \cdot C < 0$. Then X is uniruled.

In our setting, $K_A = f^*K_X + \text{Ram}(f)$ implies $f^*K_X = -\text{Ram}(f)$. Using the images of curves on A intersecting $\text{Ram}(f)$, we see that X is uniruled.
Minimal rational curves

A **minimal rational curve** on a smooth projective variety X is a rational curve C such that (i) deformations of C cover X (ii) C has minimal degree (w.r.t. a fixed polarization) among rational curves satisfying (i).

Bend-and-break: A generic minimal rational curve C is an immersed \mathbb{P}_1 in X whose normal bundle is of the type $\mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}$. C has p-dimensional deformations fixing a point, but does not have deformations fixing two points (or one point with a tangent vector). Note $\dim \text{Ann}(C) = n - 1 - p$.

A **minimal rational component** is a maximal irreducible family \mathcal{K} of minimal rational curves on X. For a given $x \in X$, let \mathcal{K}_x be the subfamily of members passing through $x \in X$. \mathcal{K}_x may be reducible. $\dim(\mathcal{K}_x) = p$ for generic x.
Varieties of minimal rational tangents

The tangent map $\tau_x : K_x \rightarrow PT_x(X)$ is defined by

τ_x is generically finite over its image for generic x. Let $C_x = Im(\tau_x)$ be the closure of the set of the tangent vectors at x of generic members of K_x, called the **variety of minimal rational tangents** at x associated to K. Let $C \subset PT(X)$ be the closure of the union of C_x for all generic $x \in X$. C is irreducible because K is irreducible.

Let $W_x \subset T_x(X)$ be the linear span of C_x. The collection of W_x for generic $x \in X$ defines a meromorphic distribution W on X, called the **minimal rational system**.
Structure of \mathcal{C} for X in Main Theorem

Choose a minimal rational component \mathcal{K} for our X and let

$$\mathcal{K}_x = \mathcal{K}_x^1 \cup \cdots \cup \mathcal{K}_x^m$$
$$\mathcal{C}_x = \mathcal{C}_x^1 \cup \cdots \cup \mathcal{C}_x^m$$

be the irreducible components at generic $x \in X$. Let C^i be a generic member of \mathcal{K}_x^i. For $s \in A$ with $x = f(s)$, let \tilde{C}^i be the irreducible component of $f^{-1}(C^i)$ through s, and $A^i := [\tilde{C}^i]$. We have m distributions A^1, \ldots, A^m on A.

![Diagram of Structure of C for X in Main Theorem](image-url)
Lemma Let \(\{ C_\sigma, \sigma \in \Sigma \} \) be an irreducible family of curves in an abelian variety sharing a common point \(o \). Then for any two general \(\sigma, \sigma' \in \Sigma, [C_\sigma] = [C_{\sigma'}] \). In particular, \(\cup_{\sigma \in \Sigma} C_\sigma \subset [C_{\sigma'}] \) for a generic \(\sigma' \).

For each member of \(K_x^i \), the component of its inverse image through \(s \) is contained in the leaf of \(A_s^i \), implying

\[
df_s^{-1}(C_x^i) \subset P.A_s^i.
\]

From \(f^* \text{Ann}(C_x^i) \subset \text{Ann}(C_x^i) \), we get

\[
\dim(A_s^i) \leq n - \dim(\text{Ann}(C_x^i)) \\
\leq n - \dim(\text{Ann}(C_x^i)) \\
= \dim(C_x^i) + 1,
\]

concluding

\[
df_s^{-1}(C_x^i) = P.A_s^i.
\]

So \(C_x \) consists of \(m \) linear subspaces. \(C \) defines a multi-valued meromorphic foliation on \(X \) whose leaves are the images under \(f \) of translates of an abelian subvariety in \(S \) of dimension \(p + 1 \).
In fact, from the irreducibility of C, we see that $f_*(A^i) = C$ for any i.
Structure of a generic leaf of C

Let Z be the image of a generic translate of A^1. For a generic point $x \in Z$, members of a component of \mathcal{K}_x cover Z. Let $C \subset Z$ be a generic member.

1. The normalization of Z is smooth near C.

2. The normalization map of Z cannot be ramified at C.

Thus Z is an immersed submanifold of X in a neighborhood of C. The normal bundle of C in Z is ample of rank p. The normal bundle of Z in X is trivial when restricted to C.
Key Lemma On X, at least outside a set of codimension ≥ 2, C_x consists of m distinct linear subspaces.

Proof. Suppose C_x consists of less than m linear subspaces at a generic point x of $\text{Branch}(f)$. This means that there are two leaves Z_1, Z_2 of C through x which have the same tangent space at x. Assume that they are not contained in $\text{Ram}(f)$. Let A_1, A_2 be their inverse image through $o \in \text{Ram}(f)$ over x. Since A_1, A_2 have different tangent spaces at o, but their images have the same tangent spaces at x, we have $\text{Ker}(df_o) \subseteq T_0(A_1) \cap T_0(A_2)$.
Suppose Z_1 and Z_2 are not tangent to $\text{Branch}(f)$. Since $f|_{\text{Ram}(f)}$ is unramified at o,

\[
T_0(A_1) \cap \text{Ram}(f) = df^{-1}(T_x(Z_1) \cap \text{Branch}(f)) = df^{-1}(T_x(Z_2) \cap \text{Branch}(f)) = T_0(A_2) \cap \text{Ram}(f)
\]

which gives $T_0(A_1) = T_0(A_2)$, a contradiction.

Thus Z_1 and Z_2 are tangent to $\text{Branch}(f)$. From the genericity of x, the same holds for small deformation of Z_1. Thus the normal bundle of Z_1 near a generic $C \subset Z_1$ cannot be trivial, a contradiction.

If Z_1 or Z_2 lies on $\text{Ram}(f)$, it is easy to get a contradiction from the unramifiedness of $f|_{\text{Ram}(f)}$ at o.

\[\text{Branch}(f)\]
Proof of Main Theorem when $\mathcal{W} = T(X)$

Assume there exists a minimal rational component \mathcal{K} for our X so that $\mathcal{W} = T(X)$. It is not difficult to show that X is rationally connected, so simply connected. Since $\mathcal{C} \to X$ has m distinct fiber components outside a set of codimension ≥ 2. \mathcal{C} consists of m distinct components. By the irreducibility of \mathcal{C}, $m = 1$ and $\mathcal{C}_x = PT_x(X)$.

Refined form of Mori's characterization of P_n: If the tangent map $\tau_x : \mathcal{K}_x \to PT_x(X)$ is dominant and birational for a generic $x \in X$, $X = P_n$.

Thus if $X \neq P_n$, we may assume that there exists a ramification divisor $\mathcal{H}_x \subset \mathcal{K}_x$ so that $\tau_x(\mathcal{H}_x)$ is a hypersurface of degree ≥ 2 in $PT_x(X)$. Applying the previous argument to \mathcal{H}_x, we see that $\tau_x(\mathcal{H}_x)$ is a hyperplane which is the image of the tangent to an abelian hyperplane in S, a contradiction. Thus $X = P_n$.
Proof of Main Theorem for general X

Choose a minimal rational component K on X and let W be the corresponding minimal rational system. Then W is the image of a distribution on A given by the linear span of the abelian subvarieties A^1, \ldots, A^m. Thus W is integrable whose leaves are images of translates of the abelian subvariety A' generated by A^1, \ldots, A^m.

Let X' be the (normalized) moduli of the leaves of W and $\beta : U \to X', \gamma : U \to X$ be the universal family. γ is finite and birational, so an isomorphism, inducing $g : X \to X'$.

A generic fiber X_0 of g is the image of the abelian variety A'. Since X_0 is the leaf of W, $W|_{X_0} = PT(X_0)$. But the members of K lying on X_0 gives a minimal rational component for X_0. It follows that $X_0 = P_k$ for some k from Main Theorem for the case $W = PT(X)$.
Every fiber of g is irreducible because it is the image of a translate of A'.

Lemma Let X be a smooth projective variety and $\psi : X \to X'$ be a surjective morphism onto a normal variety. Assume that the underlying reduced variety of each fiber of ψ is irreducible of dimension k. If a generic fiber is isomorphic to \mathbb{P}_k, then each fiber is isomorphic to \mathbb{P}_k and X' is smooth.

Thus $g : X \to X'$ is a \mathbb{P}_k-bundle, whose fibers are images of translates of A' under f. So we have the naturally induced morphism $A/A' \to X'$ satisfying Main Theorem.