Wild p-cyclic actions
on surfaces with $p_g = q = 0$

$k = \overline{k}$, $\text{char}(k) = p > 0$.

\mathcal{X}: Smooth projective surface with $p_g = q = 0$, not nec. minimal.

$\text{gcd} \mathcal{X}$ an automorphism of order $p = \text{char}(k)$

"Wild action"

Thm
(1) \mathcal{X}^g connected, i.e. a point or a connected curve
(2) $\mathcal{Y} = \mathcal{X}/\langle g \rangle$ at most rational sing.
 Its minimal resolution $\tilde{\mathcal{Y}}$ has $p_g = q = 0$.
This is an application of

“Wild p-cyclic actions on K3 surfaces”
by I. Dolgachev and Keum

Rem. $p + |G| = q^n \Rightarrow X^G = \emptyset$ or
contains at least 2 pts.

§1. G-equivariant cohomology sheaves
§2. Artin-Schreier covering
§3. Proof
§4. Application to rational elliptic surfaces.
1. G-equivariant cohomology

G a finite gp acting on a top. space X.

$\pi : X \to Y = X/G$ the quotient map.

$\mathcal{S}(X,G) = \text{cat. of abelian } G\text{-sheaves on }X$

$A = \text{cat. of abelian groups}$

The functor

$\mathcal{S}(X,G) \to A, \mathcal{F} \mapsto \Gamma'(X,\mathcal{F})^G$

can be decomposed in two ways

$\mathcal{S}(X,G) \to \mathcal{S}(Y) \to A, \mathcal{F} \mapsto \pi'_*\mathcal{F} \to \Gamma(Y,\pi^*_Y\mathcal{F})$

$\mathcal{S}(X,G) \to A \to A, \mathcal{F} \mapsto \Gamma(X,\mathcal{F}) \to \Gamma(X,\mathcal{F})^G$

where $\pi'_*\mathcal{F} : U \mapsto \Gamma(\pi^*(U),\mathcal{F})^G, U \subset Y$,

(Grothendieck)

$E_2^{p,q}(\mathcal{F}) = H^p(Y, H^q(G,\mathcal{F})) \Rightarrow H^n$

$E_2^{p,q}(\mathcal{F}) = H^p(G, H^q(X,\mathcal{F})) \Rightarrow H^n$

where $H^q(G,\mathcal{F})(U) = H^q(G,\mathcal{F}(\pi^*(U))), U \subset Y$.

Apply this to:

X irreducible algebraic variety / k, with a finite gp G of automorphisms. $\mathcal{F} = \mathcal{O}_X$.
Lemma 1. $A^i(G, O_x)$ is a torsion O_Y-module.

It is zero over the quotient of the open of X where G acts freely.

Assume G cyclic of order n, generated by g.

For a G-module M,

$H^0(G, M) = \text{Ker}(g-1) = M^G$

$H^{\text{odd}}(G, M) = \text{Ker} T / \text{Im} (g-1)$

$H^{\text{even}}(G, M) = \text{Ker}(g-1) / \text{Im} T$

where $T = 1 + g + g^2 + \cdots + g^{n-1}$, $g-1 \in \mathbb{Z}[G]$.

Globalizing this fact,

$T : \pi_* O_x \to O_Y$, $g-1 : \pi_* O_x \to \pi_* O_x$.

$H^0(G, O_x) = O_Y$

$H^1(G, O_x) = \text{Ker} T / \text{Im} (g-1)$

$H^2(G, O_x) = \text{Ker}(g-1) / \text{Im} T = O_Y / \text{Im} T$
Lemma 2. If \(G \) cyclic, \(X, Y \) both Cohen-Mac. Then
\[
0 \to \omega_Y \to (\pi_X^* \omega_X)^G \to \text{Ext}_{O_Y}^1 (H^2(G, O_X), \omega_Y) \cong
\]

pf. \(\phi : \omega_Y \to (\pi_X^* \omega_X)^G \) injective (X separable) \(\pi_X^* \omega_X = \text{Hom}_{O_Y} (\pi_X^* O_X, \omega_Y) \).
\(\phi \) is dual to \(T : \pi_X^* O_X \to O_Y \).
\[
0 \to \text{Hom}(O_Y, \omega_Y) \to \text{Hom}(\text{Im}T, \omega_Y) \to \text{Ext}^1(O_Y/\text{Im}T, \omega_Y) \to
\]
\[
\cong
\text{Hom}(\pi_X^* O_X/\text{Im}(\phi), \omega_Y) \cong (\pi_X^* \omega_X)^G
\]
\[
\text{Hom}(\text{Ker}T/\text{Im}(\phi), \omega_Y) = 0
\]
\[
H^1(G, O_X)
\]
Corollary \(\text{codim}X \geq 2 \) or \(n \in k^* \Rightarrow \omega_Y = (\pi_X^* \omega_X)^G \)

This section holds for arbitrary dimension.
2. Artin – Schreier coverings of surfaces

Well known: Any cyclic extension of deg p of a field K in char $p \equiv K[t]/(t^p - t - a)$.

Globalizing this fact, (In fact, modifying Takeda)

- There is a canonical filtration
 \[O_Y = F_0 \subset F_1 \subset \cdots \subset F_{p-1} = \pi_* O_X, \]
 \[L_i = F_i/F_{i-1} \text{ are ideal sheaves in } O_Y, \]
 \[L_i \subset L_{i+1} \subset L_1, \text{ Im } T = L_{p-1} \]
 \[F_i, L_i: \text{ locally free over nonsingular locus} \]
- Outside a finite set S in Y, L_i are locally free, $L_i = L_i^e$
 There exists an open affine cover $\{U_\alpha\}$ of $Y - S$.
 \[\pi^{-1}(U_\alpha) \equiv \text{Spec } O_Y(U_\alpha)[t_\alpha]/(t_\alpha^p - a_\alpha t_\alpha - b_\alpha), \]
 \[a_\alpha = s^{p-1}, s \in L_i^{-1} \]
 The group G acts by $t_\alpha \mapsto t_\alpha + s\alpha$, $s\alpha = s|_{U_\alpha}$

Outside a finite set, X lives in the total space of $(L_i^{-1})^{p-1}$. Define $L = L^{**}$.
There exists a positive Weil divisor B s.t. $L^{-1} \equiv O_Y(B)$
Call B the branch divisor of $\pi: X \to Y$.
Corollary. Outside a finite set of points in Y,
\[H^1(G, O_Y) = O_Y / \text{Im}(T) \cong O_Y(p-1)B \]

pf. Take the open subset Y' where $L = L_1$.
On Y', \(\text{Im}(T) = L_{p-1} = L_1^{p-1} = O_Y(-1(p-1)B) \)

Corollary. \(W_X = \pi^*(W_Y \otimes O_Y(p-1)B) \)

Remark. This is different from the one in char 0.
pf. Both reflexive, so enough to verify this formula over the complement of a finite set.
Then this follows from \#.

This section holds true for higher dimensions
if we replace "finite" by "codimension 2".

Example \[g : \mathbb{A}^2 \rightarrow \mathbb{A}^2, \ u \rightarrow u, \ v \rightarrow v+u \]
char = 3. \[W = v \cdot g(v) \cdot g^*(v) = v^3 - u^2v \]
u, w, algebraically independent, \(\in k[u, v] \)
\[\pi^*(du \wedge dw) = -u^2 du \wedge dv \]
3. Proof of Theorem.

Lemma. \(H^2(Y, O_Y) = 0 \)

pf. \(H^0(Y, (\pi_x W_x)^G) = H^0(X, W_x)^G = 0 \)
\(H^0(Y, W_Y) = H^2(Y, O_Y) = 0 \).

Lemma. \(H^1 = H^2 = k \)

proof.

Standard five term sequence

\[0 \rightarrow E_2^{1,0} \rightarrow H^1 \rightarrow E_2^{0,1} \rightarrow E_2^{2,0} \rightarrow H^2 \]

Apply this to \(E_2^{p,q} = H^p(G, H^q(X, O_X)) \)

to get

\[E_2^{0,1} = H^0(G, H^1(X, O_X)) = 0 \]
\[E_2^{1,0} = H^1(G, k) = \text{Hom}(G, k) = k \]
\[E_2^{2,0} = H^2(G, k) = \text{Ker}(\partial_1) / \text{Im} \partial_1 = k \]

Can extend \(\text{[Cartan - Eilenberg]} \)

\[\rightarrow E_2^{2,0} \rightarrow H^2 \rightarrow E_2^{0,2} = 0 \]
Recall $H^2(G, O_x) = O_Y / \text{Im } T$

$Z := \text{the closed subscheme of } Y$

defined by $\text{Im } T$

$\Rightarrow H^2(G, O_x) = O_Z$

Lemma. \(Z_{\text{red}} = \pi(X^g) \)

proof.

$H^2 = 0$ over the quotient of the open

of X where G acts freely

$\Rightarrow Z_{\text{red}} \subseteq \pi(X^g)$

Let \(x \in X^g \).

g acts on O_x, x, $g(m_x) \leq m_x$

$T(O_x, x) \leq m_x \cap O_Y, \pi(x) = m_y, \pi(x)$

$\therefore T \text{ kills constant functions}$

$\Rightarrow x \in Z_{\text{red}}$
Case 1. Suppose X^3 finite.

- $H^0(Y, H^i(G, O_X)) \cong \bigoplus_{x \in X^3} H^i(G, O_{x, X})$
- $\forall x \in X^3$, isolated, $H^1(G, O_{x, X}) \neq 0$.
- $H^0(Y, H^1(G, O_X)) \cong k \Rightarrow |X^3| = 1$
- [B. Peskin] $H^1(G, O_{x, X}) = k \Rightarrow$ rational sing.

- Let $\sigma: \tilde{Y} \to Y$ min resolution.

\[0 \to H^1(Y, O_Y) \to H^1(\tilde{Y}, O_{\tilde{Y}}) \to H^0(Y, R^1\sigma_* O_{\tilde{Y}}) \]
\[\to H^2(Y, O_Y) \to H^2(\tilde{Y}, O_{\tilde{Y}}) \to H^0(Y, R^2\sigma_* O_{\tilde{Y}}) \]
Case 2. Suppose X^3 contains a 1-dimensional part.

- $H^0(Y, H^2(G, O_X)) \cong k$
 (use the spectral sequence.)

- Z_{red} connected ($\therefore H^2(G, O_X) \cong O_Z$)

\[\pi(X^3) \]

\[\begin{array}{ccc}
W & \xrightarrow{f} & \tilde{X} \\
\downarrow & & \downarrow \pi \\
\tilde{Y} & \xrightarrow{\delta} & Y
\end{array} \]

X the normalization of \tilde{Y} in $\mathbb{A}(X)$

$W \to \tilde{X}$ resolution

$H^1(W, O_W) \cong H^1(X, O_X) \cong H^1(\tilde{X}, O_{\tilde{X}}) = 0$

$R^1f_*O_W = 0$
0 → O₀ → πₓ(Oₓ) → Im(g⁻¹) → 0

9⁻¹ ⊗ πₓOₓ : O₀ -module hom.

⇒ \(H^1(\tilde{Y}, \pi_* O_X) = H^1(\tilde{X}, O_X) = 0 \)

(\(\pi \): finite)

- \(H^1(\tilde{Y}, O_{\tilde{Y}}) = 0 \) (\(\therefore H^0(\tilde{Y}, \text{Im}(g⁻¹)) = 0 \))
 Im(g⁻¹) has filtration with quotients \(L_i \subset L_i \),
 but \(L_1 = O_{\tilde{Y}} (-B) \)
 away from a codim 2 set.

- The Leray spectral sequence for \(\sigma : \tilde{Y} \to Y \)
 completes the proof.

$\phi: S \to \mathbb{P}^1$ rational elliptic surface

with a p-torsion section

Then

(1) If ϕ has a fibre of multiplicative type in
 then p divides n.

(2) ϕ has exactly one fibre of additive type

 \mathbb{I}, \mathbb{II}, \mathbb{IV}, \mathbb{I}^*, \mathbb{IV}^*, \mathbb{III}^*, \mathbb{II}^*

Cor. Assume $p = \text{char } k > 5$. Then

ϕ has no p-torsion section.

Rem. Oguiso & Shioda classified

all pair $(T, E(K))$, T trivial lattice or the types of Sing

$E(K)$ Mordell-Weil group

$\exists 74$ cases, some of them cannot occur if p divides the order of $E(K)_{\text{tor}}$.