The MathNet Korea
Information Center for Mathematical Science

국내수학자

Information Center for Mathematical Science

국외수학자

Clément Mouhot
이름 Clément Mouhot 영어이름 Clément Mouhot
이메일 mailC.Mouhot@dpmms.cam.acuk 소속기관 University of Cambridge
home Fast methods for the Boltzmann collision integral. C. R. Math. Acad. Sci. Paris (2004), Vol 339, Pages 71-76
home Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Ration. Mech. Anal. (2004), Vol 173, Pages 169-212
home About $L^p$ estimates for the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire (2005), Vol 22, Pages 127-142
home Quantitative lower bounds for the full Boltzmann equation. Comm. Partial Differential Equations (2005), Vol 30, Pages 881-917
home Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev. Mat. Iberoamericana (2005), Vol 21, Pages 819-841
home Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Comm. Math. Phys. (2006), Vol 261, Pages 629-672
home Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity (2006), Vol 19, Pages 969-998
home Fast algorithms for computing the Boltzmann collision operator. Math. Comp. (2006), Vol 75, Pages 1833-1852
home Solving the Boltzmann equation in $N\log_2N$. SIAM J. Sci. Comput. (2006), Vol 28, Pages 1029-1053
home Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Comm. Partial Differential Equations (2006), Vol 31, Pages 1321-1348
home Cooling process for inelastic Boltzmann equations for hard spheres. J. Stat. Phys. (2006), Vol 124, Pages 655-702
home Cooling process for inelastic Boltzmann equations for hard spheres.II. J. Stat. Phys. (2006), Vol 124, Pages 703-746
home Quantitative linearized study of the Boltzmann collision operator and applications. Commun. Math. Sci. (2007), Vol , Pages 73-86
home Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. (9) (2007), Vol 87, Pages 515-535
home Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials. Asymptot. Anal. (2007), Vol 54, Pages 235-245
home Relaxation rate, diffusion approximation and Fick's law for inelastic scattering Boltzmann models. Kinet. Relat. Models (2008), Vol 1, Pages 223-248
home Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete Contin. Dyn. Syst. (2009), Vol 24, Pages 159-185
home Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres. Comm. Math. Phys. (2009), Vol 288, Pages 431-502
home On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity. Comm. Math. Phys. (2009), Vol 289, Pages 803-824
home Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions. Arch. Ration. Mech. Anal. (2009), Vol 193, Pages 227-253
home Quelques résultats d'hypocoercitivité en théorie cinétique collisionnelle. Semin. Equ. Deriv. Partielles (2009), Vol , Pages 21
home Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris (2009), Vol 347, Pages 511-516
home Prix Henri Poincaré: Cédric Villani. Matapli (2009), Vol , Pages 49-57
home Rate of convergence to self-similarity for Smoluchowski's coagulation equation with constant coefficients. SIAM J. Math. Anal. (2009/10), Vol 41, Pages 2283-2314
home Landau damping. J. Math. Phys. (2010), Vol 51, Pages 7
home Cédric Villani reçoit la médaille Fields. Gaz. Math. (2010), Vol , Pages 85-87
home Fractional Poincaré inequalities for general measures. J. Math. Pures Appl. (9) (2011), Vol 95, Pages 72-84
home Analysis of spectral methods for the homogeneous Boltzmann equation. Trans. Amer. Math. Soc. (2011), Vol 363, Pages 1947-1980
home Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal. (2011), Vol 199, Pages 493-525
home Celebrating Cercignani's conjecture for the Boltzmann equation. Kinet. Relat. Models (2011), Vol 4, Pages 277-294
home Stabilité non-linéaire pour l'équation de Vlasov-Poisson et amortissement Landau. Gaz. Math. (2011), Vol , Pages 7-18
home On Landau damping. Acta Math. (2011), Vol 207, Pages 29-201
home About Kac's program in kinetic theory. C. R. Math. Acad. Sci. Paris (2011), Vol 349, Pages 1245–1250
home On measure solutions of the Boltzmann equation, part I: moment production and stability estimates. J. Differential Equations (2012), Vol 252, Pages 3305-33663