William T. Gowers의 정보

수상나이 35
출생년도 1963
사망년도
출생지 Marlborourgh(England)
현재소속 Cambridge University and Fellow of Trinity College
연구실적 [자세히 보기]
관련출판물 1.James Lepowsky, Joram Lindenstrauss, Yuri I. Manin, John Milnor, The mathematical work of the 1998 Fields medalists. Notices Amer. Math. Soc. 46 (1999), no. 1, 17--26

2.B?la. Bollob?s, The work of William Timothy Gowers. Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998). Doc. Math. 1998, Extra Vol. I, 109--118 (electronic)

3.Katsuhiko. Matsuzaki, Yasuji. Takahashi, Mikio. Kat\=o, Introducing two of the Fields medalists: the work of C. T. McMullen and W. T. Gowers. (Japanese) S\=ugaku 51 (1999), no. 2, 186--191

4.Adolfo Quir?s, The Fields Medals [of 1998]. (Spanish) Gac. R. Soc. Mat. Esp. 1 (1998), no. 3, 439--446

5.C. S. Rajan, Bhatia Rajendra, T. R. Ramadas, Nimish A. Shah, The work of the Fields medalists:1998. Current Sci. 75 (1998), no. 12, 1290--1295

6.B?la. Bollob?s, The work of [Fields medalist] Timothy Gowers. Mitt. Dtsch. Math.-Ver. 1998, no. 3,39--43

7.Allyn. Jackson, Borcherds, Gowers, Kontsevich, and McMullen receive Fields Medals. Notices Amer. Math. Soc.45 (1998), no. 10, 1358--1360.

시상내역 Gower has made significant contribution above all to the theory of Banach spaces. Banach spaces are sets whose members are not numbers but omplicated mathematical objects such as functions or operators. Gowers has been able to construct a Banach space which has almost no symmetry. This construction has since served as a suitable counterexample for many conjectures in functional analysis, including the hyperplane problem and the Schr?der-Bernstein problem for Banach spaces.
Other Award The Prize of the European Mathematical Society(1996)
연구단행본 [1] Gowers, W. T. The two cultures of mathematics. Mathematics: frontiers and perspectives, 65--78, Amer. Math. Soc., Providence, RI, 2000. 00A30 (05Dxx)
[2] Gowers, W. Timothy Polytope approximations of the unit ball of $l\sp n\sb p$. Convex geometric analysis (Berkeley, CA, 1996), 89--109, Math. Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge, 1999. 46B20 (52A27)
[3] Gowers, W. T. Banach spaces with few operators. European Congress of Mathematics, Vol. I (Budapest, 1996), 191--201, Progr. Math., 168, Birkhäuser, Basel, 1998. 46B20 (46-02)
[4] Gowers, W. Timothy A remark about the scalar-plus-compact problem. Convex geometric analysis (Berkeley, CA, 1996), 111--115, Math. Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge, 1999. 46B03 (47B06 47B07)
[5] Gowers, W. T. Recent results in the theory of infinite-dimensional Banach spaces. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 933--942, Birkhäuser, Basel, 1995. 46B20 (46-02)
[6] Gowers, W. T. A hereditarily indecomposable space with an asymptotic unconditional basis. Geometric aspects of functional analysis (Israel, 1992--1994), 112--120, Oper. Theory Adv. Appl., 77, Birkhäuser, Basel, 1995. 46B15 (46B20)
[7] Gowers, W. T. Symmetric sequences in finite-dimensional normed spaces. Geometry of Banach spaces (Strobl, 1989), 121--132, London Math. Soc. Lecture Note Ser., 158, Cambridge Univ. Press, Cambridge, 1990. 46B15
연구논문
  • Gowers, W. T.   "Erratum: ""A new proof of Szemer?di's theorem"""   Geom. Funct. Anal.   11   4   (2001)   869   11Bxx, 11Kxx
  • Gowers, W. T.   A new proof of Szemer?di's theorem   Geom. Funct. Anal.   11   3   (2001)   465-588   11Bxx, 11Kxx
  • Gowers, W. T.   Rough structure and classification   Geom. Funct. Anal.   Special Volume   Part I   (2000)   79-117   01A67, 00A30, 05C55, 05Dxx, 68T01, 68T15
  • Gowers, W. T.   A new proof of Szemer?di's theorem for arithmetic progressions of length four   Geom. Funct. Anal.   8   3   (1998)   529-551   11B25, 11N13
  • Gowers, W. T.;Maurey, B.   Banach spaces with small spaces of operators   Math. Ann.   307   4   (1997)   543-568   46B20, 46B15, 46B28, 47A53
  • Gowers, W. T.   Lower bounds of tower type for Szemer?di's uniformity lemma   Geom. Funct. Anal.   7   2   (1997)   322-337   11B25, 05C35
  • Gowers, W. T.   A new dichotomy for Banach spaces   Geom. Funct. Anal.   6   6   (1996)   1083-1093   46B15, 46B20
  • Gowers, W. T.   An almost $m$-wise independent random permutation of the cube   Combin. Probab. Comput.   5   2   (1996)   119-130   05C80
  • Gowers, W. T.   A solution to the Schroeder-Bernstein problem for Banach spaces   Bull. London Math. Soc.   28   3   (1996)   297-304   46B03, 46B20
  • Gowers, W. T.   A solution to Banach's hyperplane problem   Bull. London Math. Soc.   26   6   (1994)   523-530   46B20, 46B15
  • Gowers, W. T.   A finite-dimensional normed space with two non-equivalent symmetric bases   Israel J. Math.   87   1-3   (1994)   143-151   46B15
  • Gowers, W. T.;Maurey, B.   The unconditional basic sequence problem   J. Amer. Math. Soc.   6   4   (1993)   851-874   46Bxx
  • Gowers, W. T.   A Banach space not containing $csb 0, lsb 1$ or a reflexive subspace   Trans. Amer. Math. Soc.   344   1   (1994)   407-420   46B99, 46B25
  • Gowers, W. T.   Lipschitz functions on classical spaces   European J. Combin.   13   3   (1992)   141-151   05D10, 46B45, 46G99, 54D80
  • Gowers, W. T.   Symmetric block bases of sequences with large average growth   Israel J. Math.   69   2   (1990)   129-151   46B15
  • Gowers, W. T.   Symmetric block bases in finite-dimensional normed spaces   Israel J. Math.   69   2   (1989)   193-219   46B15
  • Gowers, W. T.   ourier analysis and Szemer?di's theorem   Doc. Math.   Extra Vol. I     (1998)   617-629   11B25, 11P99