Maxim Kontsevich의 정보

수상나이 34
출생년도 1964
출생지 Moscow(Russia)
현재소속 I.H.E.S
연구실적 [자세히 보기]
관련출판물 1.James Lepowsky, Joram Lindenstrauss, Yuri I. Manin, John Milnor, The mathematical work of the 1998 Fields medalists. Notices Amer. Math. Soc. 46 (1999), no. 1, 17--26

2.Clifford Henry. Taubes, The work of Maxim Kontsevich. Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998). Doc. Math. 1998, Extra Vol. I, 119--126 (electronic)

3.Kenji. Fukaya, The achievements of Fields medalist M. Kontsevich. II. (Japanese) S\=ugaku 51 (1999), no. 1, 66--71

4.Y\=uji. Shimizu, The achievements of Fields medalist M. Kontsevich. I. (Japanese) S\=ugaku 51 (1999), no. 1, 62--66

5.Adolfo Quir?s, The Fields Medals [of 1998]. (Spanish) Gac. R. Soc. Mat. Esp. 1 (1998), no. 3, 439--446

6.C. S. Rajan, Bhatia Rajendra, T. R. Ramadas, Nimish A. Shah, The work of the Fields medalists:1998. Current Sci. 75 (1998), no. 12, 1290--1295

7.Clifford Henry. Taubes, The work of [Fields medalist] Maxim Kontsevich. Mitt. Dtsch. Math.-Ver. 1998, no.3, 44-48

8.Allyn. Jackson, Borcherds, Gowers, Kontsevich, and McMullen receive Fields Medals. Notices Amer. Math. Soc.45 (1998), no. 10, 1358--1360.

시상내역 Maxim Kontsevich has established a reputation in pure mathematics and theoretical physics, with influential ideas and deep insights. He has been influenced by the work of Richard Feynmann and Edward Witten. Kontsevich is an expert in the so-called "string theory" and in quantum field theory. He made his name with contributions to four problems of geometry. He was able to prove a conjecture of Witten and demonstrate the mathematical equivalence of two models of so-called quantum gravitation. Another result of Kontsevich relates to knot theory.Kontsevich has found the best "knot invariant" so far. Although knot theory is part of pure mathematics, there seem to be scientific applications.
Other Award
연구단행본 [1] Kontsevich, Maxim; Zagier, Don Periods. Mathematics unlimited---2001 and beyond, 771--808, Springer, Berlin, 2001. 11-02 (11F67 11G55)
[2] Kontsevich, Maxim; Soibelman, Yan Deformations of algebras over operads and the Deligne conjecture. Conférence Moshé Flato 1999, Vol. I (Dijon), 255--307, Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht, 2000. 18D50 (14G32 16S80 53D55 55P48)
[3] Kontsevich, M. Periods. Mathématique et physique, 28--39, SMF Journ. Annu., 1999, Soc. Math. France, Paris, 1999. 11-02 (11F67 11G55)
[4] Kontsevich, M. L.; Suhov, Yu. M. Statistics of Klein polyhedra and multidimensional continued fractions. Pseudoperiodic topology, 9--27, Amer. Math. Soc. Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999. 11K50 (11P21 22D40 37A45)
[5] Kenyon, Richard; Brenier, Yann; Kontsevich, Maxime Mathématique et physique. (French) [Mathematics and physics] SMF Journée Annuelle [SMF Annual Conference], 1999. Société Mathématique de France, Paris, 1999. iv+39 pp. 00B15
[6] Kontsevich, Maxim; Rosenberg, Alexander L. Noncommutative smooth spaces. The Gelfand Mathematical Seminars, 1996--1999, 85--108, Gelfand Math. Sem., Birkhäuser Boston, Boston, MA, 2000. 14A22 (16S38)
[7] Pseudoperiodic topology. Edited by Vladimir Arnold, Maxim Kontsevich and Anton Zorich. American Mathematical Society Translations, Series 2, 197. Advances in the Mathematical Sciences, 46. American Mathematical Society, Providence, RI, 1999. xii+178 pp. ISBN: 0-8218-2094-X 57-06
[8] Kontsevich, M. Lyapunov exponents and Hodge theory. The mathematical beauty of physics (Saclay, 1996), 318--332, Adv. Ser. Math. Phys., 24, World Sci. Publishing, River Edge, NJ, 1997. 58F11 (82C28)
[9] Kontsevich, Maxim Formality conjecture. Deformation theory and symplectic geometry (Ascona, 1996), 139--156, Math. Phys. Stud., 20, Kluwer Acad. Publ., Dordrecht, 1997. 58F06
[10] Kontsevich, Maxim Homological algebra of mirror symmetry. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 120--139, Birkhäuser, Basel, 1995. 32J25 (14D07 14J32 18E30 32G05)
[11] Kontsevich, Maxim Rigorous results in topological $\sigma$-model. XIth International Congress of Mathematical Physics (Paris, 1994), 47--59, Internat. Press, Cambridge, MA, 1995. 14N10 (14H10 14L30 58D10)
[12] Kontsevich, Maxim Enumeration of rational curves via torus actions. The moduli space of curves (Texel Island, 1994), 335--368, Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995. 14N10 (14D22 14L30)
[13] Kontsevich, Maxim; Vishik, Simeon Geometry of determinants of elliptic operators. Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993), 173--197, Progr. Math., 131, Birkhäuser Boston, Boston, MA, 1995. 58G26 (58G15)
[14] Kontsevich, Maxim Feynman diagrams and low-dimensional topology. First European Congress of Mathematics, Vol. II (Paris, 1992), 97--121, Progr. Math., 120, Birkhäuser, Basel, 1994. 57R57 (14H15 32G15 57M25)
[15] Kontsevich, Maxim Vassiliev's knot invariants. I. M. Gel\cprime fand Seminar, 137--150, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993. 57M25 (81T40)
[16] Kontsevich, Maxim Formal (non)commutative symplectic geometry. The Gel\cprime fand Mathematical Seminars, 1990--1992, 173--187, Birkhäuser Boston, Boston, MA, 1993. 58H15 (17B65 58F05)
[17] Kontsevich, M.; Manin, Yu. Gromov-Witten classes, quantum cohomology, and enumerative geometry [MR 95i:14049]. Mirror symmetry, II, 607--653, AMS/IP Stud. Adv. Math., 1, Amer. Math. Soc., Providence, RI, 1997. 14N10 (53C15 58A10 58F05)
  • Kontsevich, Maxim   Deformation quantization of algebraic varieties   Lett. Math. Phys.   56   3   (2001)   271-294   53D55, 14Axx, 16S37
  • Kontsevich, Maxim   Operads and motives in deformation quantization   Lett. Math. Phys.   48   1   (1999)   35-72   53D55, 14F42, 16S80, 18D50, 18G55, 55P48, 81S10
  • Kontsevich, Maxim   Rozansky-Witten invariants via formal geometry   Compositio Math.   115   1   (1999)   115-127   57R57, 17B66, 32J18, 53C26, 53D35, 57R32, 57R56
  • Kontsevich, M.;Manin, Yu.   Relations between the correlators of the topological sigma-model coupled to gravity   Comm. Math. Phys.   196   2   (1998)   385-398   14H10, 14D15, 14D20, 14N10, 58D10
  • Kontsevich, Maxim   Product formulas for modular forms on ${rm O}(2,n)$ (after R. Borcherds)   Asterisque     245   (1997)   41-56   11F55, 11E45, 11F22, 11F37, 14J28, 17B67, 57R55
  • Barannikov, Sergey;Kontsevich, Maxim   Frobenius manifolds and formality of Lie algebras of polyvector fields   Internat. Math. Res. Notices     4   (1998)   201-215   14D07, 14J32, 17B66, 32G13, 58D29
  • Alexandrov, M.;Schwarz, A.;Zaboronsky, O.;Kontsevich, M.   The geometry of the master equation and topological quantum field theory   Internat. J. Modern Phys. A   12   7   (1997)   1405-1429   81T70, 58D29, 58F05
  • Kontsevich, M.;Manin, Yu.   Gromov-Witten classes, quantum cohomology, and enumerative geometry   Comm. Math. Phys.   164   3   (1994)   525-562   14N10, 53C15, 58D10, 58F05
  • Kontsevich, Maxim   Intersection theory on the moduli space of curves and the matrix Airy function   Comm. Math. Phys.   147   1   (1992)   1-23   32G15, 14H15, 58F07, 81T40
  • Kontsevich, M. L.   Intersection theory on the moduli space of curves   Funct. Anal. Appl.   25   2   (1991)   123-129   32G15, 14H15, 81T40
  • Kelcprime bert, M. Ya.;Kontsevich, M. L.;Rybko, A. N.   Jackson networks on countable graphs   Theory Probab. Appl.   33   2   (1988)   358-361   60K25, 90B15
  • Kontsevich, M. L.   The Virasoro algebra and Teichm?ller spaces   Funktsional. Anal. i Prilozhen.   21   2   (1987)   78-79   17B65, 32G15, 81E13, 81G20
  • Kirillov, A. A.;Kontsevich, M. L.   The growth of the Lie algebra generated by two generic vector fields on the line   Vestnik Moskov. Univ. Ser. I Mat. Mekh.     4   (1983)   15-20   17B65
  • Kirillov, A. A.;Kontsevich, M. L.;Molev, A. I.   Algebras of intermediate growth   Akad. Nauk SSSR Inst. Prikl. Mat. Preprint     39   (1983)   1-19   17B65, 16A99
  • Kontsevich, M.;Manin, Yu.   Quantum cohomology of a product   Invent. Math.   124   1-3   (1996)   313-339   14N10,14H10
  • Kontsevich, Maxim   Mirror symmetry in dimension $3$   Asterisque     237   (1996)   275-293   14J32, 14D07, 14N10, 32G20, 32J17, 81T30