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» Determine m1(Ham(M, w)).
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> Ham(S2 X S%2 wd Aw) for A > 1. (Gromov, McDuff, Abreu,
Lalonde, etc.)

» Ham(CP?,wrs) ~ PU(3). (Gromov)
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Tools to compute 71 and the goal of the talk

There are several tools to understand the fundamental group of
Ham(M, w) and Symp(M, w)

» Flux : 71 (Symp(M,w)) — H*(M; R)
» S:mi(Ham(M,w)) — QH*(M,\)
» A:mi(Ham(M,w)) = R/P(M,w).
Our aim is to show that some loops in Ham(M, w) induced

nontrivial loops in Ham(M,w,).

I\Nﬂ,@ : is the one point blow up of weight p of (M, w).
P
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Example: Complex projective space

Consider (CP",wfs) for n > 2 and the Hamiltonian circle action

e27r/t 27rltZ .

1..”:e27rmt

Jzo: izl =z0: € zp)

Let v be the corresponding Hamiltonian loop.
» xp =[1:0---:0] is fixed by the action.
» Blow up (CP",wrs) at xp to get (((E,‘Bn,&p)

» The loop % induces a Hamiltonian loop 1[ on the blow up
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Weistein's morphism

A mi(Ham(M,w)) = R/P(M,w)
Here P(M,w) is the period group. Is the image of
[w] - Ho(M;R) = R

In our example
> P((CP",LUFs) =7Zr
» P(CP",&,) = Zr + Zrmp?
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For our initial loop % in
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n
2

Al = |37 e R/Z(m)



Weinsteins morphism

For our initial loop % in
Ham(CP", wes)

we have

Al = |-37| € R/Z()
and in the blow up, zp IS Ham(CP”,Qp)
2n

AD) = [—gﬂ 2(17Tf o <(n i)! - nﬂ € R/Z{m, mp?).
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Results

Theorem (P.)

Let ) be the Hamiltonian loop defined above and 0 < p < 1. Then
1 induces a loop v in Ham(CP",&,) and

> 4 has finite order in ﬂl(Ham((a‘;”,&p)) if p is rational;
» 4 has infinite order in wl(Ham(@vP”,Uup)) if p? is

transcendental.

Theorem (P.)

Let (M,w) be a closed symplectic manifold and (M, W) the blow
up at xo € M of weight p. If 1) € m1(Ham(M,w)) has a
representative that can be lifted to a loop v in Ham(M,w,), then

A (¥) = [Am(w) - /01 (M, w, Ht)dt]

in R/P(M, W,) where Hy is the normalized Hamiltonian function of
the loop 1.



