Hamiltonian loops on symplectic blow ups

Andrés Pedroza

Universidad de Colima

The set up and the problems

Consider (M, ω) a closed symplectic manifold and $\operatorname{Ham}(M, \omega)$ the group of Hamiltonian diffeomorphisms.

The set up and the problems

Consider (M, ω) a closed symplectic manifold and $\operatorname{Ham}(M, \omega)$ the group of Hamiltonian diffeomorphisms.

Problem.

▶ Understand the homotopy type of $Ham(M, \omega)$.

The set up and the problems

Consider (M, ω) a closed symplectic manifold and $\operatorname{Ham}(M, \omega)$ the group of Hamiltonian diffeomorphisms.

Problem.

- ▶ Understand the homotopy type of $Ham(M, \omega)$.
- ▶ Determine $\pi_1(\mathsf{Ham}(M,\omega))$.

Known results

• $\mathsf{Ham}(S^2,\omega) \simeq SO(3)$. (Smale)

Known results

- ▶ $\mathsf{Ham}(S^2, \omega) \simeq SO(3)$. (Smale)
- ▶ $\mathsf{Ham}(S^2 \times S^2, \omega \oplus \lambda \omega)$ for $\lambda \geq 1$. (Gromov, McDuff, Abreu, Lalonde, etc.)

Known results

- ▶ $\mathsf{Ham}(S^2, \omega) \simeq SO(3)$. (Smale)
- ▶ $\mathsf{Ham}(S^2 \times S^2, \omega \oplus \lambda \omega)$ for $\lambda \ge 1$. (Gromov, McDuff, Abreu, Lalonde, etc.)
- ▶ $\operatorname{Ham}(\mathbb{C}P^2, \omega_{FS}) \simeq PU(3)$. (Gromov)

Tools to compute π_1 and the goal of the talk

There are several tools to understand the fundamental group of ${\rm Ham}(M,\omega)$ and ${\rm Symp}(M,\omega)$

Tools to compute π_1 and the goal of the talk

There are several tools to understand the fundamental group of ${\rm Ham}(M,\omega)$ and ${\rm Symp}(M,\omega)$

- ► Flux : $\pi_1(\mathsf{Symp}(M,\omega)) \to H^*(M;\mathbb{R})$
- $\mathcal{S}:\pi_1(\mathsf{Ham}(M,\omega)) o QH^*(M,\Lambda)$
- $ightharpoonup \mathcal{A}: \pi_1(\mathsf{Ham}(M,\omega)) o \mathbb{R}/\mathcal{P}(M,\omega).$

Tools to compute π_1 and the goal of the talk

There are several tools to understand the fundamental group of ${\sf Ham}(M,\omega)$ and ${\sf Symp}(M,\omega)$

- ► Flux : $\pi_1(\operatorname{Symp}(M, \omega)) \to H^*(M; \mathbb{R})$
- $S: \pi_1(\mathsf{Ham}(M,\omega)) \to QH^*(M,\Lambda)$
- $ightharpoonup \mathcal{A}: \pi_1(\mathsf{Ham}(M,\omega)) o \mathbb{R}/\mathcal{P}(M,\omega).$

Our aim is to show that some loops in $\operatorname{Ham}(M, \omega)$ induced nontrivial loops in $\operatorname{Ham}(\widetilde{M}, \widetilde{\omega}_{\rho})$.

 $(\widetilde{M},\widetilde{\omega}_{\rho})$: is the one point blow up of weight ρ of (M,ω) .

Example: Complex projective space

Consider $(\mathbb{C}P^n, \omega_{FS})$ for $n \geq 2$ and the Hamiltonian circle action

$$e^{2\pi it} \cdot [z_0 : \cdots : z_n] = [z_0 : e^{2\pi it} z_1 : \cdots : e^{2\pi int} z_n]$$

Let ψ be the corresponding Hamiltonian loop.

Example: Complex projective space

Consider $(\mathbb{C}P^n, \omega_{FS})$ for $n \geq 2$ and the Hamiltonian circle action

$$e^{2\pi it} \cdot [z_0 : \cdots : z_n] = [z_0 : e^{2\pi it} z_1 : \cdots : e^{2\pi int} z_n]$$

Let ψ be the corresponding Hamiltonian loop.

- $x_0 = [1:0\cdots:0]$ is fixed by the action.
- ▶ Blow up $(\mathbb{C}P^n, \omega_{FS})$ at x_0 to get $(\widetilde{\mathbb{C}P}^n, \widetilde{\omega}_{\rho})$

Example: Complex projective space

Consider $(\mathbb{C}P^n, \omega_{FS})$ for $n \geq 2$ and the Hamiltonian circle action

$$e^{2\pi it}\cdot [z_0:\cdots:z_n]=[z_0:e^{2\pi it}z_1:\cdots:e^{2\pi int}z_n]$$

Let ψ be the corresponding Hamiltonian loop.

- $x_0 = [1:0\cdots:0]$ is fixed by the action.
- ▶ Blow up $(\mathbb{C}P^n, \omega_{FS})$ at x_0 to get $(\widetilde{\mathbb{C}P}^n, \widetilde{\omega}_{\rho})$
- lacktriangle The loop ψ induces a Hamiltonian loop $\widetilde{\psi}$ on the blow up

Weistein's morphism

$$\mathcal{A}:\pi_1(\mathsf{Ham}(M,\omega)) o \mathbb{R}/\mathcal{P}(M,\omega)$$

Weistein's morphism

$$\mathcal{A}:\pi_1(\mathsf{Ham}(M,\omega)) o \mathbb{R}/\mathcal{P}(M,\omega)$$

Here $\mathcal{P}(\mathcal{M},\omega)$ is the period group. Is the image of

$$[\omega] \cdot H_2(M; \mathbb{R}) \to \mathbb{R}$$

Weistein's morphism

$$\mathcal{A}:\pi_1(\mathsf{Ham}(M,\omega)) o \mathbb{R}/\mathcal{P}(M,\omega)$$

Here $\mathcal{P}(\mathcal{M},\omega)$ is the period group. Is the image of

$$[\omega]\cdot H_2(M;\mathbb{R})\to\mathbb{R}$$

In our example

- $P(\mathbb{C}P^n, \omega_{FS}) = \mathbb{Z}\pi$
- $\mathcal{P}(\widetilde{\mathbb{C}P}^n, \widetilde{\omega}_\rho) = \mathbb{Z}\pi + \mathbb{Z}\pi\rho^2$

Weinsteins morphism

For our initial loop ψ in

$$\mathsf{Ham}(\mathbb{C}P^n,\omega_{FS})$$

we have

$$\mathcal{A}[\psi] = \left[-\frac{n}{2}\pi \right] \in \mathbb{R}/\mathbb{Z}\langle \pi \rangle$$

Weinsteins morphism

For our initial loop ψ in

$$\mathsf{Ham}(\mathbb{C}P^n,\omega_{FS})$$

we have

$$\mathcal{A}[\psi] = \left[-\frac{n}{2}\pi \right] \in \mathbb{R}/\mathbb{Z}\langle \pi \rangle$$

and in the blow up, $\widetilde{\psi} \in \mathrm{Ham}(\widetilde{\mathbb{C}P^n}, \widetilde{\omega}_{\rho})$

$$\mathcal{A}(\widetilde{\psi}) = \left[-\frac{n}{2}\pi + \frac{\pi \rho^{2n}}{2(1-\rho^{2n})} \left(\frac{\rho^2}{(n-1)!} - n \right) \right] \in \mathbb{R}/\mathbb{Z}\langle \pi, \pi \rho^2 \rangle.$$

Results

Theorem (P.)

Let ψ be the Hamiltonian loop defined above and $0<\rho<1$. Then ψ induces a loop $\widetilde{\psi}$ in $\mathrm{Ham}(\widetilde{\mathbb{C}P^n},\widetilde{\omega}_\rho)$ and

- $\widetilde{\psi}$ has finite order in $\pi_1(\mathsf{Ham}(\widetilde{\mathbb{C}P^n},\widetilde{\omega}_{\rho}))$ if ρ^2 is rational;
- $\widetilde{\psi}$ has infinite order in $\pi_1(\operatorname{Ham}(\widetilde{\mathbb{C}P^n}, \widetilde{\omega}_{\rho}))$ if ρ^2 is transcendental.

Results

Theorem (P.)

Let ψ be the Hamiltonian loop defined above and $0<\rho<1$. Then ψ induces a loop $\widetilde{\psi}$ in $\mathrm{Ham}(\widetilde{\mathbb{C}P^n},\widetilde{\omega}_\rho)$ and

- $ightharpoonup \widetilde{\psi}$ has finite order in $\pi_1(\mathsf{Ham}(\widetilde{\mathbb{C}P^n},\widetilde{\omega}_{\rho}))$ if ρ^2 is rational;
- $\widetilde{\psi}$ has infinite order in $\pi_1(\operatorname{Ham}(\widetilde{\mathbb{C}P^n},\widetilde{\omega}_{\rho}))$ if ρ^2 is transcendental.

Theorem (P.)

Let (M,ω) be a closed symplectic manifold and $(\widetilde{M},\widetilde{\omega}_{\rho})$ the blow up at $x_0 \in M$ of weight ρ . If $\psi \in \pi_1(\operatorname{Ham}(M,\omega))$ has a representative that can be lifted to a loop $\widetilde{\psi}$ in $\operatorname{Ham}(\widetilde{M},\widetilde{\omega}_{\rho})$, then

$$\mathcal{A}_{\widetilde{M}}(\widetilde{\psi}) = \left[\mathcal{A}_{M}(\psi) + \int_{0}^{1} c_{
ho}(M, \omega, H_{t}) dt\right]$$

in $\mathbb{R}/\mathcal{P}(\widetilde{M},\widetilde{\omega}_{\rho})$ where H_t is the normalized Hamiltonian function of the loop ψ .