The Complexity of Register Allocation

Philipp Klaus Krause

October 29, 2011
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Register Allocation</td>
</tr>
<tr>
<td>2</td>
<td>Graph Coloring</td>
</tr>
<tr>
<td>3</td>
<td>Hardness</td>
</tr>
</tbody>
</table>
Table of Contents

1. Register Allocation

2. Graph Coloring

3. Hardness
Register Allocation

- Programs use variables that have to be stored somewhere.
- Compiler decides where to store variables.
 - Registers vs. memory.
 - Very important for code quality.
int binomial_coefficient(int n, int k) {
 int i, delta, max, c;
 if(n < k)
 return(0);
 if(n == k)
 return(1);
 if(k < n - k) {
 delta = n - k;
 max = k;
 } else {
 delta = k;
 max = n - k;
 }
 c = delta + 1;
 for(i = 2; i <= max; i++)
 c = (c * (delta + i)) / i;
 return(c);
}
int binomial_coefficient(int n, int k) {
 int i, delta, max, c;
 if(n < k)
 return(0);
 if(n == k)
 return(1);
 if(k < n - k) {
 delta = n - k;
 max = k;
 } else {
 delta = k;
 max = n - k;
 }
 c = delta + 1;
 for(i = 2; i <= max; i++)
 c = (c * (delta + i)) / i;
 return(c);
}
int binomial_coefficient(int n, int k)
{
 int i, delta, max, c;
 if(n < k)
 return(0);
 if(n == k)
 return(1);
 if(k < n - k)
 {
 delta = n - k;
 max = k;
 }
 else
 {
 delta = k;
 max = n - k;
 }
 c = delta + 1;
 for(i = 2; i <= max; i++)
 c = (c * (delta + i)) / i;
 return(c);
}
```c
int binomial_coefficient(int n, int k) {
    int i, delta, max, c;
    if(n < k)
        return(0);
    if(n == k)
        return(1);
    if(k < n - k) {
        delta = n - k;
        max = k;
    } else {
        delta = k;
        max = n - k;
    }
    c = delta + 1;
    for(i = 2; i <= max; i++)
        c = (c * (delta + i)) / i;
    return(c);
}
```
Given an input program and parameter r, the number of registers and a number g, the problem of register allocation is to decide if there is an r-colorable induced subgraph S in the conflict graph, such that the sum $\sum_{v \in V \setminus V(S)} c(v)$ of the costs of the variables outside this subgraph is at most g.
Assuming all r registers are equal:

- Registers are colors.
- Color the conflict graph.
- Placing as many variables in registers as possible is equivalent to finding a maximum r-colorable induced subgraph.

1G. Chaitin, 1982
Problems with Graph Coloring

- NP-hard:
 Approximations are used, leading to suboptimal colorings.

- Hard to generalize:
 Register preferences, aliasing, etc are hard to model.

- Solution to NP-Hardness: Restricting the class of input graphs.
Many problems that are NP-hard can be solved efficiently when restricted to graphs of bounded tree-width.

The tree-width of control-flow graphs is bounded\(^2\).

For structured programs, and fixed \(r\) the decision problem of \(r\)-colorability of the conflict graph can be solved in linear time\(^3\).

For structured programs, and fixed \(r\) the register allocation problem can be solved in polynomial time\(^4\).

\(^2\)M. Thorup, 1998

\(^3\)H. Bodlaender et alii, 1998

\(^4\)K.
Table of Contents

1 Register Allocation
2 Graph Coloring
3 Hardness
Given a circuit C (input) and an integer k (parameter) the weighted circuit satisfiability problem asks if there is a satisfying assignment for C of weight exactly k (i.e. exactly k of the inputs are set to “true” in the assignment).
Parametrized Complexity Classes

- \textsf{fpt} is the class of all parametrized problems parametrized by k that can be solved in time $f(k)p(n)$ for input size n, computable f and polynomial p.
- $W[t]$ is the class of all parametrized problems that can be \textsf{fpt}-reduced to the WCS problem on weft t, depth d SAT-circuits, for a constant $d \geq 1$.
- $W[\text{SAT}]$ is the class of all parametrized problems that are fixed-parameter reducible to the WCS problem on SAT-circuits.
- $W[P]$ is the class of all parametrized problems that are fixed-parameter reducible to the WCS problem.
- XP is the class of all problems parametrized by k that can be solved in time $f(k, n)$, with n being the size of the input and f polynomial in n for fixed k.

$$\textsf{fpt} \subseteq W[1] \subseteq W[2] \subseteq \ldots \subseteq W[\text{SAT}] \subseteq W[P] \subseteq XP.$$
OR
AND
Example transformation
WCS reduced to register allocation

- The tree-width of the control-flow graph is at most one more than the tree-width of the circuit.
- The node where all the live ranges of inputs meet ensures that at most \(r = k \) of the inputs are assigned the value “true”.
- Adjusting the weights we can ensure that finding an optimal assignment of variables to registers results in a “yes” or “no” answer for the WCS problem.
The register allocation problem, when parametrized by the number of registers r is $W[\text{SAT}]$-hard, even for structured programs of tree-width 2.