Treewidth: Preprocessing and Kernelization

Hans L. Bodlaender

Joint work with
Arie Koster, Frank van den Eijkhof,
Bart Jansen, Stefan Kratsch,
Vincent Kreuzen
This talk

- Survey of work on *preprocessing* and *kernelization* for treewidth
 1. Treewidth
 2. Reduction rules
 3. Safe separators
 4. Kernelization
 5. Conclusions
1

TREewidth
Treewidth

- Graph parameter telling how treelike a graph is
- Introduced by Robertson & Seymour (198*) in work on graph minors
- Several equivalent notions
- Many applications
 - Intractable problems often easier when restricted to graphs of bounded treewidth, e.g.:
 - Courcelle’s theorem: Each problem formulatable in Monadic Second Order Logic can be solved in linear time on graphs of bounded treewidth
 - Probabilistic networks: linear time algorithm for inference problem on graphs of bounded treewidth
A **tree decomposition** of a graph G is a tree in which each node corresponds to a set of vertices from G (a *bag*) with:

- Every vertex of G occurs in some bag.
- For every edge of G there is a bag containing both endpoints.
- All bags containing the same vertex form a connected subtree.

The **treewidth** of a tree-decomposition is the size of the largest bag minus one.
Lemmas

- If W is a clique, then in any tree decomposition, there is a bag that contains all vertices in W.
- If G' is obtained from G by contracting edges, then the treewidth of G' is at most the treewidth of G.
Algorithms on tree decompositions

- Usual form:
 1. Find a tree decomposition of small width
 2. Run a dynamic programming algorithm on the tree decomposition

- Time of step 2 is (usually) exponential (or worse) in the width of the tree decomposition

- So, need for algorithms to determine treewidth and find tree decompositions of small width
Complexity of treewidth

- NP-complete
- B, 1997: For each fixed k, there is a linear time algorithm to test if the treewidth of a given graph is at most k, and if so, find a corresponding tree decomposition
- $O(n) = \Theta(n)$ time... (Röhrig, 1998; even if $k=4$)
- ... and many many more results ...
- Practical algorithms...
 - Heuristics
 - Fast(er) exact algorithms
 - Preprocessing
 - Transform your input to a smaller equivalent input
Two types of preprocessing

- **Reduction rules** (*Simplification*)
 - Rules that change G into a smaller `equivalent` graph
 - Maintains a lower bound variable for treewidth _low_

- **Safe separators** (*Divide and Conquer*)
 - Splits the graph into two or more smaller parts with help of a separator that is made to a clique
REDUCTION RULES
Safe rules that
- Make G smaller
- Maintain optimality...
- Use for preprocessing graphs when computing treewidth

Reduction

Input Graph G

Preprocessing rules

Reduced Graph H

Compute Treewidth for G

Compute Treewidth for H

Tree decomposition for G

Tree decomposition for H

Undo preprocessing
Reduction rules

- Help of a variable low
- low gives lower bound on treewidth of original input graph

- Safe rule: if (G, low) is changed to (G', low') then
 - $\max (\text{treewidth}(G), \text{low}) = \max (\text{treewidth}(G', \text{low'}))$

- Algorithm:
 - while we see a safe rule to apply (that simplifies instance) do
 - Apply it
Reduction rules for Treewidth

- Arnborg, Proskurowski, 1986: Rules that recognize graphs of treewidth 1, 2, 3
- Bodlaender, Koster, vd Eijkhof, 2005: Preprocessing heuristics for treewidth
- vd Eijkhof, Bodlaender, Koster, 2007: Generalization and weighted variants
- Sanders, 1996: Rules for treewidth 4
- Hein, Koster, 2011: Experimental evaluation of Sanders rules
- Bodlaender, Jansen, Kratsch, 2011: “New” rules and kernelization
- Kreuzen, 2011: Experimental evaluation of new rules
Example: Series Rule
(from Arnborg, Proskurowski, 1986)

- **Series Rule**: remove a vertex of degree 2 and connect its neighbors
- Safe if treewidth is at least 2 (low > 1)
Example

Reduce

Solve

Undo reductions
A vertex is **simplicial** if its neighbors form a clique.

A vertex v is **almost simplicial** if v has a neighbor w such that all neighbors except w form a clique.
Let \(v \) be a simplicial vertex in \(G \)

Remove \(v \)

Set \(\text{low} := \max(\text{low}, \text{degree}(v)) \)

Simplicial Rule is safe

Special cases: all vertices of degree 0 and 1
Almost Simplicial Rule (2005 version)

- Let v be a almost simplicial vertex in G and $\text{low} \geq \text{degree}(v)$
- Remove v
- Turn neighbors into clique

Almost Simplicial Rule is safe
Proof of safeness of Almost Simplicial Rule

- Suppose G' is obtained from G
- G' is obtained from G by contracting, so $\text{treewidth}(G')$ is at most $\text{treewidth}(G)$
- If we have tree decomposition of G': $N(v)$ is a clique, so there is a bag containing $N(v)$

\[
\begin{align*}
N(v) & \rightarrow v \\
N(v) & \rightarrow N(v)
\end{align*}
\]

- Add a new bag as shown
- New bag has size $\deg(v) + 1 \leq \text{low} + 1$
Buddy Rule

- Let v, w be a buddy in G and $low \geq 3$
- Remove v, w.
- Turn neighbors into clique

Safe; generalizations exist
(Extended) Cube Rule

- Let $\text{low} \geq 3$ and cube structure (see picture)
- Replace subgraph as shown
- Safe. Not often in practice but helps to increase lower bound

Original Graph \rightarrow Reduced Graph
Lower bound rules

- Rules that increase *low*
 - E.g., if no rule applies and \(\text{low} = 3 \), then set \(\text{low} := 4 \)
 - Or run a lower bound heuristic
Results for probabilistic networks

<table>
<thead>
<tr>
<th>instance</th>
<th>original</th>
<th>preprocessed</th>
<th></th>
<th>instance</th>
<th>original</th>
<th>preprocessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm</td>
<td>37 65</td>
<td>0 0 4</td>
<td></td>
<td>oesoca+</td>
<td>67 208</td>
<td>14 75 9</td>
</tr>
<tr>
<td>barley</td>
<td>48 126</td>
<td>26 78 4</td>
<td></td>
<td>oesoca</td>
<td>39 67</td>
<td>0 0 3</td>
</tr>
<tr>
<td>boblo</td>
<td>221 328</td>
<td>0 0 3</td>
<td></td>
<td>oesoca42</td>
<td>42 72</td>
<td>0 0 3</td>
</tr>
<tr>
<td>diabetes</td>
<td>413 819</td>
<td>116 276 4</td>
<td></td>
<td>oow-bas</td>
<td>27 54</td>
<td>0 0 4</td>
</tr>
<tr>
<td>link</td>
<td>724 1738</td>
<td>308 1158 4</td>
<td></td>
<td>oow-solo</td>
<td>40 87</td>
<td>27 63 4</td>
</tr>
<tr>
<td>mildew</td>
<td>35 80</td>
<td>0 0 4</td>
<td></td>
<td>oow-trad</td>
<td>33 72</td>
<td>23 54 4</td>
</tr>
<tr>
<td>munin1</td>
<td>189 366</td>
<td>66 188 4</td>
<td></td>
<td>pignet2</td>
<td>3032 7264</td>
<td>1002 3730 4</td>
</tr>
<tr>
<td>munin2</td>
<td>1003 1662</td>
<td>165 451 4</td>
<td></td>
<td>pigs</td>
<td>441 806</td>
<td>48 137 4</td>
</tr>
<tr>
<td>munin3</td>
<td>1044 1745</td>
<td>96 313 4</td>
<td></td>
<td>ship-ship</td>
<td>50 114</td>
<td>24 65 4</td>
</tr>
<tr>
<td>munin4</td>
<td>1041 1843</td>
<td>215 642 4</td>
<td></td>
<td>vsd</td>
<td>38 62</td>
<td>0 0 4</td>
</tr>
<tr>
<td>munin-kgo</td>
<td>1066 1730</td>
<td>0 0 5</td>
<td></td>
<td>water</td>
<td>32 123</td>
<td>22 96 5</td>
</tr>
<tr>
<td>wilson</td>
<td>21 27</td>
<td>0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Some cases could be solved with preprocessing to optimality
- Often substantial reductions obtained
- Time needed for preprocessing was small (never more than a few seconds)
Safe separators

A set of vertices S is a **safe separator** if and only if

The treewidth of G equals the maximum over the treewidth of all graphs obtained by

- Taking a connected component W of G - S
- Take the graph, induced by W ∪ S
- Make S into a clique in that graph
Use of safe separators

- **Split** the graph with safe separators (making the separator to a clique)
 - Until no safe separators can be found
- Solve each component separately
- Treewidth is **maximum** of treewidths of components
- Also possible to construct tree decomposition of input graph

- Some sufficient conditions for separators to be safe...
What separators are safe?

- Clique separators (several authors)
- Minimal almost clique separators (B, Koster, 2006)
 - S is a minimal separator: it has no separator as a proper subset
 - S is almost a clique: there is a vertex \(v \) with \(S - \{ v \} \) is a clique
- All minimal separators of size 1 and 2 (corollary)
- All minimal separators of size 3 that split off more than one vertex (BK)
If one component is contracted to the red vertex, the separator turns into a clique.

So, the treewidth of the components is at most the treewidth of G.

We can combine tree decompositions of the components to one of G (example on next slide).

Treewidth(G) equals maximum of treewidth components.
Safe separators:

Results for probabilistic networks

| instance | |V| |E| clique | almost-clique | size 3 | # graphs | # cliques | # To Do | low |
|----------------|-----------|------------|-----------|-----------|-----------|--------|---------|----------|--------|-----|
| barley-pp | 26 | 78 | 0 | 7 | 0 | 8 | 7 | 1 | 5 |
| diabetes-pp | 116 | 276 | 0 | 85 | 0 | 86 | 84 | 2 | 4 |
| link-pp | 308 | 1158 | 0 | 0 | 0 | 1 | 0 | 1 | 4 |
| munin1-pp | 66 | 188 | 0 | 2 | 0 | 3 | 2 | 1 | 4 |
| munin2-pp | 165 | 451 | 6 | 13 | 4 | 24 | 12 | 12 | 4 |
| munin3-pp | 96 | 313 | 2 | 2 | 2 | 7 | 4 | 3 | 4 |
| munin4-pp | 215 | 642 | 3 | 4 | 0 | 8 | 2 | 6 | 4 |
| oesoca+-pp | 14 | 75 | 0 | 0 | 0 | 1 | 0 | 1 | 9 |
| oow-trad-pp | 23 | 54 | 0 | 0 | 1 | 2 | 1 | 1 | 4 |
| oow-solo-pp | 27 | 63 | 0 | 0 | 1 | 2 | 0 | 2 | 4 |
| pathfinder-pp | 12 | 43 | 0 | 5 | 0 | 6 | 6 | 0 | 6 |
| pignet2-pp | 1002 | 3730 | 0 | 0 | 0 | 1 | 0 | 1 | 4 |
| pigs-pp | 48 | 137 | 0 | 1 | 0 | 2 | 1 | 1 | 5 |
| ship-ship-pp | 24 | 65 | 0 | 0 | 0 | 1 | 0 | 1 | 4 |
| water-pp | 22 | 96 | 0 | 1 | 0 | 2 | 1 | 1 | 6 |
4

KERNELIZATION
Bounds on reduced instance sizes?

- Preprocessing + a proof on quality (size of resulting instances)
- What we cannot expect: always decrease input size

- **Lemma.** If $P \neq NP$, then for any NP-complete problem Q there is no polynomial time algorithm that always transforms an input of Q to a smaller equivalent input
 - **Proof:** Otherwise, repeat till $O(1)$ size input, and solve.

- **Kernelization:** bounds as a function of a parameter of the input...
A parameterized problem is a subset of $\Sigma^* \times \mathbb{N}$ for some finite alphabet Σ.

A parameterized problem Q is said to have a **kernel** of size $f(k)$ if there is an algorithm A, mapping inputs of Q to inputs of Q with

- A uses time polynomial in $|x| + k$ on input (x,k)
- For all inputs (x,k): $Q((x,k))$ if and only if $Q(A(x,k))$
- If A maps (x,k) to (x', k') then
 - $|x'| \leq f(k)$
 - $k' \leq f(k)$

From fixed parameter tractability (Downey, Fellows)

Intuition: bound $f(k)$ with polynomial time preprocessing
Negative result

B, Downey, Fellows, Hermelin (2008)
Treewidth has no kernel of polynomial size unless the *and-distillation conjecture does not hold.*

Treewidth
- Given: Graph $G=(V,E)$, integer k
- Parameter: k
- Question: Is the treewidth of G at most k

Next: other parameters
Kernels for treewidth with other parameters

- Treewidth with Given Vertex Cover
 - Given: Graph $G = (V, E)$, integer k, vertex cover W of G
 - Parameter: $|W| = l$
 - Question: Is the treewidth of G at most k?

- If we do not have a vertex cover: use a 2-approximation algorithm to find one (affects constant factor)

- B, Jansen, Kratsch, 2011: A kernel with $O(k^3)$ vertices for Treewidth with Given Vertex Cover
First two rules

- **Simplicial Vertex Rule variant:**
 - If \(v \) is a simplicial vertex of degree at most \(k \), then remove \(v \)
 - If \(v \) is a simplicial vertex of degree more than \(k \), then say no
 - the treewidth of \(G \) is at most \(k+1 \)

- **Trivial Decision Rule:**
 - If \(|W| \leq k \), then say yes
 - A simple construction of treewidth at most \(|W| \) exists
Common Neighbors Rule

- Taken from “linear time algorithm” B, 1997
- Safe rule

Common Neighbors Rule

- If \(x \) and \(y \) are in \(W \), and \(x \) and \(y \) have at least \(k+1 \) common neighbors, then add the edge \(\{x,y\} \)
Kernelization algorithm and bound

- The algorithm:
 - while a rule can be applied do apply it

- Theorem: The reduced graph has $|W|^{2k} = O(k^3)$ vertices.
 - Proof:
 Each vertex v in $V' - W$ is not simplicial, so has two nonadjacent neighbors, which must be in W. Assign v to such a pair. Each nonadjacent pair of vertices in W has at most k vertices assigned to it, otherwise the common neighbor rule applies.
Feedback vertex set parameter and almost simplicial vertices

- **Theorem** (B, Jansen, Kratsch, 2011): Treewidth with a Given Feedback Vertex Set has a kernel with $O(k^4)$ vertices.

- Feedback vertex set: a set of vertices W such that $G[V-W]$ is a forest.

- A leaf in the forest that is not almost simplicial has two non-adjacent neighbors in W
 - Motivates to remove almost simplicial vertices

\[= \text{almost simplicial} \]
New Almost Simplicial Vertex Rule

- If \(v \) is an almost simplicial vertex, then
 - If the degree of \(v \) is at most \(k \) then make the neighbors of \(v \) into a clique and remove \(v \)
 - Same as old rule
 - If the degree of \(v \) is at least \(k+2 \) then say no
 - \(G \) has a clique of size \(k+2 \) so treewidth is larger than \(k \)
 - If the degree of \(v \) is exactly \(k+1 \) then
 1. If for each pair of neighbors \(x, y \) of \(w \) we have that \(\{x, y\} \in E \) or there is a path from \(x \) to \(y \) that avoids \(N[v] \), then say no
 2. Otherwise, make the neighbors of \(v \) into a clique and remove \(v \)

Rule that removes all (regardless of degree) simplicial vertices

Test can be carried out in polynomial time
Experimental evaluation

- New almost simplicial vertex rule can be changed into preprocessing step
 - Instead of saying no, increase the lower bound by one
 - Eventually, all almost simplicial vertices are removed
- Also, common neighbors rule and generalization (disjoint paths, implemented with flow / Ford-Fulkerson) were implemented
- Work fall 2011, Kreuzen, (B, Kratsch)
Experiments and first results

- Experiment 1: use the New Almost Simplicial Vertex Rule on 570 graphs from “our” usual test set (all graphs except a few very large ones)
 - On 116 instances, additional reductions with the new rule could be applied
 - Additional reductions ranged from 1 vertex to all vertices of graph
 - Running time was somewhat larger, up to 1.7 seconds for 645 vertex graph initx.1.2, but still “good”

- Experiment 2: experiment 1 + Common Neighbors and Disjoint Paths Rule
 - Sometimes slow (worst case $O(n^7)$) but still practical
 - Further reductions obtained
 - Adding edges to graph actually is good!
Some results of experiment 1

| graph | $|V|$ | $|E|$ | Old $|V'|$ | Old $|E'|$ | Old low | New $|V'|$ | New $|E'|$ | New low |
|-----------|-----|-----|--------|--------|--------|--------|--------|--------|--------|
| barley | 48 | 126 | 26 | 78 | 4 | 25 | 76 | 5 |
| celar04 | 340 | 1009| 114 | 524 | 6 | 105 | 476 | 8 |
| miles500 | 128 | 1170| 103 | 1068 | 8 | 79 | 827 | 22 |
| zeroin.i.2| 211 | 3541| 157 | 3541 | 4 | 57 | 1097 | 31 |
Ongoing work

- Better implementation for experiment 2 (mixing rules to speedup)
- Random graphs
- More test data

General conclusion: the new rules help in practice to obtain further reductions!
CONCLUSIONS
Conclusions

- This talk:
 - Preprocessing heuristics for treewidth: reductions and separators
 - Kernels for treewidth
 - “Vertex cover” result only used existing rules + a counting argument
 - “Feedback vertex set” result uses generalization of almost simplicial vertex rule to bound number of leaves in forest + new rules + counting argument

- Interaction between (algorithmic) graph theory and experimental work

- Ongoing work: kernels for pathwidth (B, Jansen, Kratsch)