Total fractional colorings of graphs with large girth

Daniel Král’
Institute for Theoretical Computer Science (ITI)
Charles University Prague

Tomáš Kaiser (ZČU Pilsen)

František Kardoš (UPJŠ Košice)

Andrew King (Columbia University)

Jean-Sébastien Sereni (LIAFA Paris)
Overview

- Graph colorings—basic notions
- Fractional graph parameters
- Problem and our results
- Main proof idea
Vertex colorings

- two adjacent vertices must receive distinct colors
- chromatic number $\chi(G)$
- $\chi(G) \leq \Delta + 1$

Brooks’ theorem (1941): $\chi(G) \leq \Delta$ for a connected graph G unless G is complete or an odd cycle
Edge colorings

- two incident edges must receive distinct colors
- chromatic index $\chi'(G)$
- Vizing’s theorem (1964): $\chi'(G) \in \{\Delta, \Delta + 1\}$
 Holyer (1981): NP-complete to decide between the two values
Total colorings

- coloring of vertices and edges
 any two adjacent/incident elements must receive distinct colors
- total chromatic number $\chi_t(G)$
- Behzad’s conjecture (1965): $\chi_t(G) \leq \Delta + 2$
 Molloy and Reed’s bound (1998): $\chi_t(G) \leq \Delta + 10^{28}$
Overview

• Graph colorings—basic notions
• Fractional graph parameters
• Problem and our results
• Main proof idea
Fractional colorings

- coloring = partitioning into disjoint color classes
- fractional coloring
 each color class has weight, they need not be disjoint
 every element in classes of total weight at least one
 minimizing the total weight of all color classes
- total fractional chromatic number $\chi_f(G)$
- weights only zero or one \Rightarrow coloring
Example

\[\chi_{t,f} = 3 \text{ and } \chi_t = 4 \]
Basic results

- clearly, $\chi_f(G) \leq \chi(G)$, $\chi'_f(G) \leq \chi'(G)$ and $\chi_{t,f}(G) \leq \chi_t(G)$
- the gap between $\chi_f(G)$ and $\chi(G)$ can be arbitrary
 $\chi(G)$ can be arbitrary and $\chi_f(G) \leq 2 + \varepsilon$
- $\chi_f(G) \leq 2.416$ if G is cubic and has large girth
 examples of cubic graphs with large girth with $\chi_f(G) \geq 2.196$
- $\chi'_f(G) = 3$ for cubic bridgeless graphs
- $\Delta \leq \chi'_f(G) \leq \Delta + \varepsilon$ for graphs with large girth
Overview

• Graph colorings—basic notions
• Fractional graph parameters
• Problem and our results
• Main proof idea
PREVIOUS RESULTS

• Behzad’s conjecture is fractionally true
 Kilakos and Reed (1993): $\chi_{t,f}(G) \leq \Delta + 2$

• When does the equality hold?
 Ito, Kennedy and Reed (2009): only if G is K_{2n} or $K_{n,n}$

• What about large girth?
Reed’s conjecture

Let Δ be an integer. For every $\varepsilon > 0$, there exists g such that every graph G with maximum degree Δ and girth at least g has total fractional chromatic number at most $\Delta + 1 + \varepsilon$.
Our results

• Theorem (Kardoš, Král’, Sereni):
 Let Δ be an integer. For every $\varepsilon > 0$, there exists g such that every graph G with maximum degree Δ and girth at least g has total fractional chromatic number at most $\Delta + 1 + \varepsilon$.

• Theorem (Kaiser, King, Král’):
 Let $\Delta \in \{3, 4, 6, 8, \ldots\}$. There exists g such that every graph G with maximum degree Δ and girth at least g has total fractional chromatic number equal to $\Delta + 1$.
OVERVIEW

• Graph colorings—basic notions
• Fractional graph parameters
• Problem and our results
• Main proof idea
Decomposition into paths

- \(\chi_{t,f}(G) \leq \alpha \iff \exists \) probability distribution on independent sets, each element included with probability at least \(1/\alpha \)

- exposition restricted to cubic bridgeless case for simplicity (3 slides)
 \(\alpha = 4 + \varepsilon \)

- there exists a distribution on perfect matchings such that each edge included with probability \(1/3 \)

- remove vertices at distance \(g/100 \) from the complementary 2-factor collection of paths of length at most \(g/100 \)
 each edge included with probability at least \(2/3 - 200/g \)
 each vertex with probability \(1 - 100/g \)
Colorings by levels

- split paths into 10 levels
- sweep paths in the 1st level, then in the 2nd level, etc.
 include vertices and edges greedily into a total independent set
- if a vertex can be included, include it with probability $1 - \xi$
Colorings by levels

- split paths into 10 levels
- sweep paths in the 1st level, then in the 2nd level, etc.
 include vertices and edges greedily into a total independent set
- if a vertex can be included, include it with probability $1 - \xi$
Colorings by levels

- split paths into 10 levels
- sweep paths in the 1st level, then in the 2nd level, etc.
 include vertices and edges greedily into a total independent set
- if a vertex can be included, include it with probability $1 - \xi$
Colorings by levels

- split paths into 10 levels
- sweep paths in the 1st level, then in the 2nd level, etc.
 include vertices and edges greedily into a total independent set
- if a vertex can be included, include it with probability $1 - \xi$
Colorings by levels

- split paths into 10 levels
- sweep paths in the 1st level, then in the 2nd level, etc.
 include vertices and edges greedily into a total independent set
- if a vertex can be included, include it with probability $1 - \xi$
Colorings by levels

- split paths into 10 levels

- sweep paths in the 1st level, then in the 2nd level, etc.
 include vertices and edges greedily into a total independent set

- if a vertex can be included, include it with probability $1 - \xi$
SUMMARY FOR CUBIC GRAPHS

• levels guarantee mutual independence of neighbors for each path
• for a suitable choice of $\xi > 0$
 each vertex on a path included with probability $1/4$
 each edge in a path included with probability $3/8$
• considering the distribution over perfect matchings:
 each vertex included with probability $1/4 - 25/g$
 each edge included with probability $1/4 - 75/g$
• a better resolution of coloring conflicts at the ends of the paths
 needed to obtain $\chi_{t,f} = 4$ for large g
Differences for general graphs

- if $\Delta = 4, 6, 8, \ldots$, uniform coverings by 2-factors exist
- if $\Delta = 5, 7, 9, \ldots$, uniform coverings by 2-factors exist assuming the graph is cyclically $(\Delta - 1)$-edge-connected
- a stronger result on extending precolorings can be proven
- if the graph is not cyclically $(\Delta - 1)$-edge-connected, split the graph into two pieces, one inclusion-wise minimal the minimal piece is cyclically $(\Delta - 1)$-edge-connected induction on the bigger piece and extend to the smaller one
Thank you for your attention!