EXISTENCE AND UNIQUENESS OF VERY SINGULAR SOLUTION FOR THE P-LAPLACIAN EQUATION WITH CONVECTION

Zhong Bo Fang

1) Department of Mathematics, Chonnam National University, Kwangju, 500–757, Korea

Corresponding Author: Zhong Bo Fang, fangzb7777@hotmail.com

ABSTRACT

We study an existence and uniqueness of very singular self-similar solution for a p-laplacian equation with nonlinear convection term defined on the half line;

\[u_t = (|u_x|^{p-2}u_x)_x + (u^q)_x \quad \text{in} \quad Q = \mathbb{R}_+ \times \mathbb{R}_+ \]

with homogeneous Neumann boundary condition, where \(p > 2 \) and \(p - 1 < q < 2(p - 1) \). The solution we find is of the form

\[u(x, t) = t^{-\alpha} f(xt^{-\beta}) := t^{-\alpha} f(r), \quad r = xt^{-\beta}, \]

where \(\alpha := (p - 1)/(pq - 2p + 2) \), \(\beta := (q - p + 1)/(pq - 2p + 2) \) and \(f \) is the nontrivial, nonnegative solution of an nonlinear ordinary differential equation;

\[(|f'|^{p-2}f')' + \beta rf' + \alpha f + (f^q)' = 0, \quad r > 0 \]

with condition \(f'(0) = 0 \), \(\lim_{r \to \infty} r^{\alpha/\beta} f(r) = 0 \).

REFERENCES

20. G. Leoni, on the very singular self-similar solutions for the porous media equation with absorption, *Differential Intergrals Equations.*, 10(1997), no.6, 1123-1140.