ROBUST STRUCTURAL CONTROL DESIGN USING GENERALIZED SEMI-INFINITE MIN-MAX OPTIMIZATION

Wonsuk PARK and Hyun-Moo KOH

1) Department of Civil Engineering, Seoul National University, Seoul 151-742, KOREA

Corresponding Author: Wonsuk PARK, wpark@sel.snu.ac.kr

ABSTRACT

We present a robust structural control system design method for a set of the critical excitations. The control system design problem is formulated as a generalized semi-infinite min-max problem and solved by an adaptive approximation algorithm. The critical excitations, which generally account for inherent uncertainties in predicting forthcoming events such as earthquake and wind, are modeled as a parameterized input filter. Decentralized static output feedback is used for fixed structure controller design. A simple numerical example demonstrates the viability of the proposed method.

INTRODUCTION

We consider a controller synthesis problem in the form

$$\min_{x \in \mathbb{R}^n} \psi(x)$$

where $\psi : \mathbb{R}^n \to \mathbb{R}$ is defined by

$$\psi(x) = \max_{y \in \mathbb{R}^m} \left\{ \|G(x, y; s)\|_2 \left| f(x, y) \leq 0 \right\} \right.$$

with $Y = \left\{ y \in \mathbb{R}^m | g(y) \leq 0 \right\}$, where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ represent control design variables and excitation filter variables, respectively.

This problem can be considered as a class of generalized semi-infinite min-max problems. In this paper, we use an adaptive approximations and exact penalization methods in order to solve the min-max problem.

REFERENCES