CROSS COMMUTATORS ON BACKWARD SHIFT INVARIANT SUBSPACES OVER THE BIDISK II

Kei Ji Izuchi and Kou Hei Izuchi

ABSTRACT. In the previous paper, we gave a characterization of backward shift invariant subspaces of the Hardy space over the bidisk on which \([S_\phi S_\psi] = 0\) for a positive integer \(n \geq 2\). In this case, it holds that \(S_\psi^n = cI\) for some \(c \in \mathbb{C}\). In this paper, it is proved that if \([S_\phi S_\psi] = 0\) and \(\phi \in H^\infty(\Gamma_z)\), then \(S_\phi = cI\) for some \(c \in \mathbb{C}\).

1. Introduction

Let \(\Gamma^2\) be the 2-dimensional unit torus. We write \((z, w) = (e^{is}, e^{it})\) for variables in \(\Gamma^2 = \Gamma_z \times \Gamma_w\). Let \(L^2 = L^2(\Gamma^2)\) be the usual Lebesgue space on \(\Gamma^2\) with the norm
\[
\|f\|_2 = \left(\int_0^{2\pi} \int_0^{2\pi} |f(e^{is}, e^{it})|^2 \frac{dsdt}{(2\pi)^2}\right)^{1/2}.
\]
With the usual inner product, \(L^2\) is a Hilbert space. Let \(H^2 = H^2(\Gamma^2)\) be the Hardy space over \(\Gamma^2\). We denote by \(H^2(\Gamma_z)\) and \(H^2(\Gamma_w)\) the Hardy spaces on the unit circle in variables \(z\) and \(w\), respectively. We think of \(H^2(\Gamma_z)\) and \(H^2(\Gamma_w)\) as closed subspaces of \(H^2\). For each \(f \in H^2\), we can write \(f\) as
\[
f = \sum_{i=0}^{\infty} \oplus f_i(w)z^i, \quad f_i(w) \in H^2(\Gamma_w).
\]
Let \(P\) be the orthogonal projection from \(L^2\) onto \(H^2\). For a closed subspace \(M\) of \(L^2\), we denote by \(P_M\) the orthogonal projection from \(L^2\) onto \(M\). For a function \(\psi \in L^\infty\), the Toeplitz operator \(T_\psi\) on \(H^2\) is defined by \(T_\psi f = P(\psi f)\) for \(f \in H^2\). It is well known that \(T_\psi^* = T_\overline{\psi}\), and \(T_\psi^*T_\varphi = T_{\psi \varphi}\) for every \(\varphi \in H^\infty(\Gamma_z)\) and \(\psi \in H^\infty(\Gamma_w)\). A function \(f \in H^2\) is called inner if \(|f| = 1\) on \(\Gamma^2\) almost everywhere. A nonzero closed subspace \(M\) of \(H^2\) is

Received September 20, 2010; Revised December 17, 2010.
2010 Mathematics Subject Classification. Primary 47A15, 32A35; Secondary 47B35.
Key words and phrases. backward shift invariant subspace, invariant subspace, Hardy space, cross commutator.
The first author is partially supported by Grant-in-Aid for Scientific Research (No.16340037), Japan Society for the Promotion of Science.

©2012 The Korean Mathematical Society
called invariant if \(z M \subset M \) and \(w M \subset M \). In one variable case, the well known Beurling theorem [2] says that an invariant subspace \(M \) of \(H^2(\Gamma_z) \) has a form \(M = q(z)H^2(\Gamma_z) \), where \(q(z) \) is an inner function. In two variable case, the structure of invariant subspaces of \(H^2 \) is extremely complicated, see [3, 10].

Let \(M \) be an invariant subspace of \(H^2 \) with \(M \neq \{0\} \) and \(M \neq H^2 \). Then \(T_q^*(H^2 \ominus M) \subset H^2 \ominus M \) and \(T_w^*(H^2 \ominus M) \subset H^2 \ominus M \). In this paper, we write
\[
N = H^2 \ominus M.
\]

Usually, \(N \) is called a backward shift invariant subspace of \(H^2 \). See [1, 9] for studies of backward shift invariant subspaces over the unit circle \(\Gamma \).

For a function \(\psi \in L^\infty \), we denote by \(R_\psi \) the operator on \(M \) defined by \(R_\psi f = P_M(\psi f) \) for \(f \in M \). It holds \(R_\psi^* R_\psi = R_\psi \) and \(R_\psi = T_\psi | M \). We denote by \([R_z, R_\psi] \) the cross commutator of \(R_z \) and \(R_\psi \), that is, \([R_z, R_\psi] = R_z R_\psi - R_\psi R_z \). In [8], Mandrekar proved that \([R_z, R_\psi] = 0 \) if and only if \(M \) is Beurling type, that is, \(M = qH^2 \) for some inner function \(q \) on \(\Gamma^2 \). This is a nice characterization of Beurling type invariant subspaces of \(H^2 \). More generally, in [4] the authors proved that \([R_z, R_\psi] = 0 \) if and only if \([R_{q_1(z)}, R_{q_2(w)}] = 0 \) for nonconstant functions \(q_1(z) \) and \(q_2(w) \). See [1, 9] for characterizations of \(H^2 \).

We define the operator \(S_\psi \) on \(N \) by \(S_\psi f = P_N(\psi f) \) for \(f \in N \). Then we have \(S_\psi^* S_\psi = T_\psi^* | N \). In [6], it is proved that \([S_z, S^*_w] = 0 \) if and only if \(N \) has one of the following forms:

\[
\cdot \quad N = H^2 \ominus q_1(z)H^2,
\]
\[
\cdot \quad N = H^2 \ominus q_2(w)H^2,
\]
\[
\cdot \quad N = (H^2 \ominus q_1(z)H^2) \cap (H^2 \ominus q_2(w)H^2)
\]

for nonconstant one variable inner functions \(q_1(z) \) and \(q_2(w) \). In [7], it is shown that the condition \([S_z, S^*_z] = 0 \) does not imply \([S_z, S^*_w] = 0 \). In [5], the authors proved that for \(n \geq 2 \), \([S_z^n, S^*_w] = 0 \) if and only if one of the following conditions holds:

(i) \([S_z, S^*_w] = 0\),

(ii) \(S_z^n S^*_w = 0\),

(iii) there exists a Blaschke product \(b(z) \) with
\[
b(z) = \prod_{j=1}^n \frac{z - \alpha_j}{1 - \overline{\alpha_j}z}, \quad 0 < |\alpha_j| < 1,
\]

where \(\alpha_i \neq \alpha_j \) for every \(i,j \) with \(i \neq j \) and \(\alpha_1^n = \alpha_2^n = \cdots = \alpha_n^n \) such that \(N \subset H^2 \ominus b(z)H^2 \).

In [7, Theorem 2.2], it is proved that (ii) holds if and only if either \(N \subset H^2(\Gamma_z) \) or \(N \subset H^2 \ominus z^nH^2 \). If \(N \subset H^2(\Gamma_z) \), then we have \([S_z, S^*_z] = 0\). Moreover, in [5] it is proved that if \([S_z^n, S^*_z] = 0\) and \([S_z, S^*_w] \neq 0\), then \(M \cap H^\infty(\Gamma_z) = \theta(z)H^\infty(\Gamma_z) \) for an inner function \(\theta(z) \), and \(z^n \in \mathbb{C} + \theta(z)H^\infty(\Gamma_z) \). This case, we have \(S_z^n = cI \) for some \(c \in \mathbb{C} \).

The purpose of this paper is to generalize the above phenomenon. Let \(\varphi(z) \in H^\infty(\Gamma_z) \) be a nonconstant function. Suppose that \([S_{\varphi(z)}, S^*_w] = 0 \) and
Lemma 2.3.

$[S_z, S_w^*] \neq 0$. In Section 2, we prove that $M \cap H^\infty(\Gamma_z) \neq \{0\}$ and $M \cap H^2(\Gamma_z) \neq H^2(\Gamma_z)$. Hence by the Beurling theorem, $M \cap H^2(\Gamma_z) = \theta(z)H^2(\Gamma_z)$ for a nonconstant inner function $\theta(z)$. Thus we get $\theta(z)H^2 \subset M$. Write

$$M_\theta = M \oplus \theta(z)H^2.$$

We prove that $M_\theta \neq \{0\}$ and $T_{\varphi(z)}^* M_\theta \subset M_\theta$. In another word, $\varphi(z)N \subset N \oplus \theta(z)H^2$ holds. In Section 3, we study on the one variable Hardy space $H^2(\Gamma_z)$. Let N_1, N_2 be backward shift invariant subspaces of $H^2(\Gamma_z)$ satisfying $\{0\} \neq N_2 \subset \subset N_1 \neq H^2(\Gamma_z)$. It is proved that $\varphi(z)N_2 \subset N_2 \oplus (H^2(\Gamma_z) \oplus N_1)$ if and only if $\varphi(z) \in \mathbb{C} + (H^2(\Gamma_z) \oplus N_1)$. As applications of these facts, in Section 4 we prove that $\varphi(z) \in \mathbb{C} + \theta(z)H^\infty(\Gamma_z)$ and $S_\varphi = cI$ for some $c \in \mathbb{C}$.

2. Equivalent conditions for $[S_{\varphi(z)}, S_w^*] = 0$

Let N be a backward shift invariant subspace of H^2 with $N \neq \{0\}$ and $N \neq H^2$, and let $\varphi(z) \in H^\infty(\Gamma_z)$ be a nonconstant function. We write operators T_{φ} and T_w^* on $H^2 = M \oplus N$ in the matrix forms as

$$T_{\varphi} = \begin{pmatrix} P_{M} T_{\varphi} | N & 0 \\ 0 & S_{\varphi} \end{pmatrix}, \quad T_w^* = \begin{pmatrix} 0 & 0 \\ P_N T_w^* | M & S_w^* \end{pmatrix} \text{ on } H^2 = \begin{pmatrix} M \oplus N \end{pmatrix}.$$

Let

$$A = P_M T_{\varphi} | N \quad \text{ and } \quad B = P_N T_w^* | M.$$

Since $T_{\varphi} T_w^* = T_w^* T_{\varphi}$ on H^2, we have

$$S_{\varphi} S_w^* = BA + S_w^* S_{\varphi}.$$

Hence we get the following.

Lemma 2.1. $[S_{\varphi}, S_w^*] = 0$ if and only if $BA = 0$.

It is not difficult to see that

$$\ker B = \{ f \in M : T_w^* f \in M \} = \{ f \in M \oplus wM : T_w^* f = 0 \} \oplus wM = (M \cap H^2(\Gamma_z)) \oplus wM$$

and

$$\overline{\text{range } A} = M \oplus \ker A^* = M \oplus \{ f \in M : T_{\varphi}^* f \in M \}.$$

Then by Lemma 2.1, we have the following.

Lemma 2.2. $[S_{\varphi}, S_w^*] = 0$ if and only if

$$M \oplus \{ f \in M : T_{\varphi}^* f \in M \} \subset (M \cap H^2(\Gamma_z)) \oplus wM.$$

Lemma 2.3. If $[S_{\varphi}, S_w^*] = 0$ and $[S_z, S_w^*] \neq 0$, then $M \cap H^2(\Gamma_z)$ is a nontrivial invariant subspace of $H^2(\Gamma_z)$.
Proof. Since $M \neq H^2$, trivially $M \cap H^2(\Gamma_z) \neq H^2(\Gamma_z)$ holds. Suppose that $M \cap H^2(\Gamma_z) = \{0\}$. By Lemma 2.2,
\[M \oplus \{ f \in M : T^*_w f \in M \} \subset wM. \]
Hence
\[M \oplus wM \subset \{ f \in M : T^*_w f \in M \}. \]
Since $T^*_w T^*_\varphi = T^*_\varphi T^*_w$ on H^2, if $f \in M$ and $T^*_w f \in M$, then $T^*_\varphi (w^n f) = w^n T^*_w f \in M$ for every $n \geq 0$, so that by the above we get
\[w^n(M \oplus wM) \subset \{ f \in M : T^*_\varphi f \in M \}. \]
Therefore
\[M = \sum_{n=0}^{\infty} \oplus w^n(M \oplus wM) \subset \{ f \in M : T^*_\varphi f \in M \}. \]
Thus we get $T^*_\varphi M \subset M$. This shows that $\varphi(z) N \subset N$.

Let
\[A = \{ \psi(z) \in H^\infty(\Gamma_z) : \psi N \subset N \}. \]
Then both functions 1 and $\varphi(z)$ are contained in A. For $\psi \in A$ and $h \in N$, we have
\[N \ni T^*_\varphi (\psi h) = (T^*_\varphi \psi) h + \psi(0) T^*_\varphi h. \]
Hence $(T^*_\varphi \psi) N \subset N$, so that $T^*_\varphi A \subset A$. It is easy to see that A is a weak-* closed subalgebra of $H^\infty(\Gamma_z)$. Let
\[L = \{ f(z) \in H^1(\Gamma_z) : \int_0^{2\pi} f(e^{i\theta}) \overline{\varphi(e^{i\theta})} \frac{d\theta}{2\pi} = 0 \text{ for every } \psi(z) \in A \}. \]
Then L is a closed subspace of $H^1(\Gamma_z)$. Since $T^*_\varphi A \subset A$ and $1 \in A$, we have $zL \subset L$.

Suppose that $L \neq \{0\}$. By the Beurling theorem, $L = q(z) H^1(\Gamma_z)$ for an inner function $q(z)$. Since $1 \in A$, $q(0) = 0$. Hence $\overline{\varphi}(z) \in H^\infty(\Gamma_z)$. Since $\varphi(z)^n \in A$ for $n \geq 1$,
\[\int_0^{2\pi} e^{-i\theta} q(e^{i\theta}) \overline{\varphi(e^{i\theta})}^n e^{i\theta} h(e^{i\theta}) \frac{d\theta}{2\pi} = \int_0^{2\pi} q(e^{i\theta}) h(e^{i\theta}) \overline{\varphi(e^{i\theta})}^n \frac{d\theta}{2\pi} = 0 \]
for every $h(z) \in H^1(\Gamma_z)$. Hence $\overline{\varphi}(z) \overline{\varphi}(z)^n \in H^\infty(\Gamma_z)$ for every $n \geq 1$. By the Schneider theorem [11], we have $\varphi(z) \in H^\infty(\Gamma_z)$. This shows that $\varphi(z)$ is constant. Since we assumed that $\varphi(z)$ is nonconstant, this is a contradiction. Therefore $L = \{0\}$. Hence $A = H^\infty(\Gamma_z)$. Especially, we have $z \in A$ and $z N \subset N$. Then $T^*_z N = S_z$. Since $T^*_w N = S_w \text{ and } T^*_w T^*_z = T^*_w T^*_z$ on H^2, we have $S_z S_w = S_w S_z$. This is a desired contradiction. \[\square \]

In the rest of this section, we assume that $M \cap H^2(\Gamma_z) \neq \{0\}$. Since $M \neq H^2$, $M \cap H^2(\Gamma_z) \neq H^2(\Gamma_z)$. By the Beurling theorem,
\[M \cap H^2(\Gamma_z) = \theta(z) H^2(\Gamma_z) \]
Theorem 2.6. Let $f \in M_\theta$. Then $T^*_w f \in M_\theta$ if and only if $f \in wM_\theta$.

Proof. Suppose that $T^*_w f \in M_\theta$. Then

$$f - f(z,0) \in wM_\theta \subset M_\theta.$$

Since $f \in M_\theta$, $f(z,0) \in M_\theta$. Since $M_\theta \cap H^2(\Gamma_z) = \{0\}$, $f(z,0) = 0$. Hence $f \in wM_\theta$. The converse is trivial. \qed

Let P_θ be the orthogonal projection from H^2 onto $H^2 \ominus \theta(z)H^2$, and Q_ϕ be the operator on $H^2 \ominus \theta(z)H^2$ defined by $Q_\phi f = P_\theta(\phi f)$ for $f \in H^2 \ominus \theta(z)H^2$.

We can write both operators Q_ϕ and $T^*_w \mid_{H^2 \ominus \theta(z)H^2}$ as

$$Q_\phi = \left(\begin{array}{cc} * & P_{M_\theta}T^*_w \cdot N \\ 0 & S_\phi \end{array} \right) \quad \text{on} \quad H^2 \ominus \theta(z)H^2 = \left(\begin{array}{c} M_\theta \\ N \end{array} \right).$$

and

$$T^*_w \mid_{H^2 \ominus \theta(z)H^2} = \left(\begin{array}{cc} * & 0 \\ P_NT^*_w \cdot M_\theta & S_w \end{array} \right) \quad \text{on} \quad H^2 \ominus \theta(z)H^2 = \left(\begin{array}{c} M_\theta \\ N \end{array} \right).$$

Let

$$A_\theta = P_{M_\theta}T^*_w \cdot N$$

and

$$B_\theta = P_NT^*_w \cdot M_\theta.$$

Lemma 2.5. $[S_\phi, S^*_w] = 0$ if and only if $B_\theta A_\theta = 0$.

Proof. Let $f \in H^2 \ominus \theta(z)H^2 = M_\theta \oplus N$. We have $T^*_w (\varphi(z)f) = \varphi(z)T^*_w f$. Write

$$\varphi(z)f = Q_\phi f \oplus f_1 \in (M_\theta \oplus N) \ominus \theta(z)H^2.$$

Since $T^*_w f_1 \in \theta(z)H^2$ and $T^*_w Q_\phi f \perp \theta(z)H^2$, we get $T^*_w Q_\phi f = Q_\phi T^*_w f$. Thus $Q_\phi T^*_w = T^*_w Q_\phi$ on $M_\theta \oplus N$. Similarly as Lemma 2.1, we can prove the assertion. \qed

The following is a slight generalization of [7, Theorem 4.4].

Theorem 2.6. The following conditions are equivalent;

(i) $[S_\phi, S^*_w] = 0$,
(ii) $M_\theta \ominus \{ f \in M_\theta : T^*_w f \in M_\theta \} \subset wM_\theta$,
(iii) $T^*_w M_\theta \subset M_\theta$.

(iv) \(\varphi(z)N \subset N \oplus \theta(z)H^2 \).

Proof. By Lemma 2.4,

\[\ker B_\theta = \{ f \in M_\theta : T_v^*f \in M_\theta \} = wM_\theta. \]

Also we have

\[\overline{\text{range } A_\theta} = M_\theta \ominus \ker A_\theta = M_\theta \ominus \{ f \in M_\theta : T_v^*f \in M_\theta \}. \]

Hence by Lemma 2.5, we get (i) \(\Leftrightarrow \) (ii).

If (ii) holds, then

\[M_\theta \ominus wM_\theta \subset \{ f \in M_\theta : T_v^*f \in M_\theta \}. \]

Hence for each \(n \geq 0 \), we have

\[T^*_v (z) w^n (M_\theta \ominus wM_\theta) = w^n T^*_v (z) (M_\theta \ominus wM_\theta) \subset w^n M_\theta \subset M_\theta. \]

Since

\[M_\theta = \sum_{n=0}^{\infty} w^n (M_\theta \ominus wM_\theta), \]

we have \(T^*_v M_\theta \subset M_\theta \). Thus we get (iii).

(iii) \(\Rightarrow \) (ii) is trivial.

It is not difficult to see that (iii) \(\Leftrightarrow \) (iv). \(\square \)

Suppose that \([S_\varphi, S_w^*] = 0 \) and \([S_z, S_w^*] \neq 0 \). Then we proved that

\[\theta(z)H^2 \not\subset M \quad \text{and} \quad \varphi(z)(H^2 \ominus M) \subset (H^2 \ominus M) \oplus \theta(z)H^2. \]

Note that \(\theta(z)H^2 \) and \(M \) are invariant subspaces of \(H^2 \). Now we fix an inner function \(\theta(z) \). Here we have a question for which \(\varphi(z) \in H^\infty(\Gamma_z) \) satisfies the above condition. In the next section, we study a similar question in the one variable Hardy space \(H^2(\Gamma_z) \). In Section 4, we revisit on this question.

3. A theorem on the unit circle

In this section, we prove the following theorem.

Theorem 3.1. Let \(N_1, N_2 \) be backward shift invariant subspaces of \(H^2(\Gamma_z) \) with \(0 \neq N_2 \subsetneq N_1 \neq H^2(\Gamma_z) \), and \(\varphi(z) \in N_1 \). Then

\[\varphi(N_2 \cap H^\infty(\Gamma_z)) \subset N_2 \ominus (H^2(\Gamma_z) \subset N_1) \]

if and only if \(\varphi(z) = cP_{N_1}1 \) for some \(c \in \mathbb{C} \). In this case, if we define the operator \(S_\varphi \) on \(N_1 \) by \(S_\varphi f = P_{N_1}(\varphi f) \) for \(f \in N_1 \), then \(S_\varphi = cI \).

To prove the theorem, we need two lemmas which are not difficult to show.

Lemma 3.2. Let \(N \) be a backward shift invariant subspace of \(H^2(\Gamma_z) \). Then \(N \cap H^\infty(\Gamma_z) \) is dense in \(N \).

Lemma 3.3. Let \(N \) be a backward shift invariant subspace of \(H^2(\Gamma_z) \) with \(N \neq \{0\} \) and \(N \neq H^2(\Gamma_z) \). If \(\varphi \in H^2(\Gamma_z) \) is a nonconstant function, then \(\varphi(N \cap H^\infty(\Gamma_z)) \not\subset N \).
Proof of Theorem 3.1. By the Beurling theorem,
\[H^2(\Gamma_z) \ominus N_1 = \theta H^2(\Gamma_z) \]
for some nonconstant inner function \(\theta \).

First, suppose that
\[\varphi(N_2 \cap H^\infty(\Gamma_z)) \subset N_2 \oplus (H^2(\Gamma_z) \ominus N_1). \]
Since \(N_2 \neq \{0\} \), by Lemma 3.2 there exists \(h_1 \in N_2 \cap H^\infty(\Gamma_z) \) with \(h_1(0) = 1 \). Write
\[\varphi = f_1 \oplus \theta g_1 \in N_2 \oplus (H^2(\Gamma_z) \ominus N_1) = N_2 \oplus \theta H^2(\Gamma_z). \]

Also for each \(h \in N_2 \cap H^\infty(\Gamma_z) \), we can write
\[\varphi h = f \oplus \theta g \in N_2 \oplus \theta H^2(\Gamma_z). \]

When \(h(0) = 0 \), we shall prove that
\[g(0) = 0. \]

By (3.2) and (3.1),
\[T^*_z(f + \theta g) = T^*_z(f) + \theta T^*_z g + g(0)T^*_z \theta \]
\[= (T^*_z f + g(0)T^*_z \theta) + \theta T^*_z g. \]

Note that \(T^*_z h \in N_2 \cap H^\infty(\Gamma_z) \) and \(T^*_z f + g(0)T^*_z \theta \perp \theta H^2(\Gamma_z) \). By the assumption, \(\varphi T^*_z h \in N_2 \oplus \theta H^2(\Gamma_z) \).

Thus \(g(0) = 0 \). Thus we get (3.3).

By (3.1) and (3.2),
\[\varphi h = (f - h(0)f_1) \oplus \theta(g - h(0)g_1) \in N_2 \oplus \theta H^2(\Gamma_z). \]
Since \((h - h(0))h_1(0) = 0 \), by (3.3) we get
\[g(0) = h(0)g_1(0). \]

By (3.2) again,
\[\varphi T^*_z h + h(0)T^*_z \varphi = T^*_z(f + \theta g) = (T^*_z f + g(0)T^*_z \theta), \]
so that
\[\varphi T^*_z h = (h(0)T^*_z \varphi + T^*_z f + g(0)T^*_z \theta) \oplus \theta T^*_z g. \]
Since \(T^*_z h \in N_2 \cap H^\infty(\Gamma_z) \) and \(\varphi \perp \theta H^2(\Gamma_z) \), by the assumption we have
\[-h(0)T^*_z \varphi + T^*_z f + g(0)T^*_z \theta \in N_2. \]
Similarly we have
\[\varphi T_z^{n+2}h = \left(- (T_z^n h)(0)T_z^n \varphi - h(0)T_z^{n+2} \varphi + T_z^{n+2} f + g(0)T_z^{n+2} \theta \right) + \left(T_z^n g)(0)T_z^n \theta \right) \oplus \theta T_z^{n+2} g. \]

Repeating the same argument, we get
\[\varphi T_z^{n+2}h = \left[- \left(\sum_{j=0}^{n-1} (T_z^{n-j-1}h)(0)T_z^{n-j+1} \varphi \right) + T_z^{n+2} f \right. \]
\[\left. + \left(\sum_{j=0}^{n-1} (T_z^{n-j}g)(0)T_z^{n-j} \theta \right) \right] \oplus \theta T_z^{n+2} g. \]

Since \(h \in N_2 \cap H^\infty(\Gamma_z) \), \(T_z^{n+2} h \in N_2 \cap H^\infty(\Gamma_z) \). Hence by (3.2) and (3.4),
\[(T_z^{n+2} g)(0) = (T_z^{n+2} h)(0)g_1(0) \]
for every \(n \geq 0 \). This shows that \(g = g_1(0)h \). By (3.2), we obtain
\[(\varphi - g_1(0) \theta) h = f \in N_2 \]
for every \(h \in N_2 \cap H^\infty(\Gamma_z) \). By Lemma 3.3, \(\varphi - g_1(0) \theta \) is constant. Write \(\varphi - g_1(0) \theta = c \). Since \(\varphi \in N_1 \), we have \(\varphi = cP_{N_1} \).

Next, suppose that \(\varphi = cP_{N_1} \). Then
\[\varphi = cP_{N_1} = c(1 - \bar{\theta}(0) \theta). \]

Hence for \(f \in N_2 \cap H^\infty(\Gamma_z) \), we have
\[\varphi f = cf - c \bar{\theta}(0) \theta f \in N_2 \oplus \theta H^2(\Gamma_z). \]

Thus we get \(\varphi (N_2 \cap H^\infty(\Gamma_z)) \subset N_2 \oplus (H^2(\Gamma_z) \ominus N_1) \).

Corollary 3.4. Let \(N_1, N_2 \) be backward shift invariant subspaces of \(H^2(\Gamma_z) \) with \(\{0\} \neq N_2 \subsetneq N_1 \neq H^2(\Gamma_z) \), and \(\varphi(z) \in L^\infty(\Gamma_z) \). Define the operator \(S_\varphi \) on \(N_1 \) by \(S_\varphi h = P_{N_1} \varphi h \) for \(h \in N_1 \). Then \(S_\varphi N_2 \subset N_2 \) if and only if
\[\varphi \in C + H^2(\Gamma_z) \ominus N_1 \subset H^2(\Gamma_z) \ominus N_1 \subset H^2(\Gamma_z) \oplus (H^2(\Gamma_z) \ominus N_1). \]

Proof. Write \(H^2(\Gamma_z) \ominus N_1 = \theta H^2(\Gamma_z) \) for some inner function \(\theta \). Let
\[\varphi = \varphi_1 \ominus \varphi_2 \ominus \theta \varphi_3 \in H^2(\Gamma_z) \ominus N_1 \oplus \theta H^2(\Gamma_z). \]

It is easy to see that
\[P_{N_1} (\varphi_1 (N_2 \cap H^\infty(\Gamma_z))) \subset N_2 \]
and
\[P_{N_1} (\theta \varphi_3 (N_2 \cap H^\infty(\Gamma_z))) = \{0\}. \]
Hence $S_\varphi N_2 \subset N_2$ if and only if $P_{N_1}(\varphi_2(N_2 \cap H^\infty(\Gamma_z))) \subset N_2$. By Theorem 3.1, $S_\varphi N_2 \subset N_2$ if and only if
\[
\varphi = \varphi_1 + cP_{N_1}1 + \theta \varphi_3 = \varphi_1 + c(1 - \overline{\theta(0)}) + \theta \varphi_3 = \varphi_1 + c + \theta(\varphi_3 - c\overline{\theta(0)}).
\]
This completes the proof. \qed

The following corollaries follow from Corollary 3.4 directly.

Corollary 3.5. Let N_1, N_2 be backward shift invariant subspaces of $H^2(\Gamma_z)$ with $\{0\} \neq N_2 \subset N_1 \neq H^2(\Gamma_z)$, and $\varphi(z) \in H^\infty(\Gamma_z)$. Then $\varphi N_2 \subset N_2 \oplus (H^2(\Gamma_z) \circ N_1)$ if and only if $\varphi \in \mathbb{C} + (H^2(\Gamma_z) \circ N_1)$.

Corollary 3.6. Let N_1, N_2 be backward shift invariant subspaces of $H^2(\Gamma_z)$ with $\{0\} \neq N_2 \subset N_1 \neq H^2(\Gamma_z)$, and $\varphi(z) \in H^\infty(\Gamma_z)$. If $\varphi N_2 \subset N_2 \oplus (H^2(\Gamma_z) \circ N_1)$, then $N_1 = N_2$ if and only if $\varphi \notin \mathbb{C} + (H^2(\Gamma_z) \circ N_1)$.

Corollary 3.7. Let M_1, M_2 be invariant subspaces of $H^2(\Gamma_z)$ with $\{0\} \neq M_1 \subset M_2 \neq H^2(\Gamma_z)$, and $\varphi(z) \in H^\infty(\Gamma_z)$. Then $T_\varphi^*(M_2 \circ M_1) \subset M_2 \circ M_1$ if and only if $\varphi \in \mathbb{C} + M_1$.

Corollary 3.8. Let M_1, M_2 be invariant subspaces of $H^2(\Gamma_z)$ with $\{0\} \neq M_1 \subset M_2 \subset H^2(\Gamma_z)$, and $\varphi(z) \in H^\infty(\Gamma_z)$. If $T_\varphi^*(M_2 \circ M_1) \subset M_2 \circ M_1$, then $\varphi \notin \mathbb{C} + M_1$ if and only if $M_2 = H^2(\Gamma_z)$.

4. The main theorem

As applications of the results in Sections 2 and 3, we prove the following.

Theorem 4.1. Let N be a backward shift invariant subspace of H^2 with $N \neq \{0\}$ and $N \neq H^2$. Let $\varphi(z) \in H^\infty(\Gamma_z)$ be a nonconstant function. If $[S_\varphi, S_w] = 0$ and $[S_z, S_\varphi^*] \neq 0$, then $\varphi(z) - c \in M \cap H^\infty(\Gamma_z)$ for some $c \in \mathbb{C}$ and $S_\varphi = c1$.

Proof. By Lemma 2.3, $M \cap H^2(\Gamma_z) = \theta(z)H^2(\Gamma_z)$ for a nonconstant inner function $\theta(z)$. Since $\theta(z)H^2 \subset M$, as in Section 2 we write
\[
M_\theta = M \circ \theta(z)H^2.
\]
Since $[S_z, S_\varphi^*] \neq 0$, we have $M_\theta \neq \{0\}$. By Theorem 2.6,
\[
\varphi(z)N \subset N \circ \theta(z)H^2
\]
and
\[
T_\varphi^*M_\theta \subset M_\theta.
\]
To prove the assertion, we assume that
\[
\varphi(z) - c \notin \theta(z)H^\infty(\Gamma_z)
\]
for every $c \in \mathbb{C}$. We shall prove that $[S_z, S_\varphi^*] = 0$. This will be a desired contradiction. We consider two cases $\theta(0) = 0$ and $\theta(0) \neq 0$ separately.
Case 1. Suppose that $\theta(0) = 0$. If $\theta(z) = cz$ for some constant c with $|c| = 1$, then it is easy to see that

$$M = \theta(z)H^2 + q(w)H^2$$

for either a nonconstant inner function $q(w)$ or $q(w) \equiv 0$. In this case, by [6] we have $[S_z, S_w^n] = 0$. So, we may assume that $\theta(z) = z\theta_1(z)$ for a nonconstant inner function $\theta_1(z)$. Then

$$(4.5) \quad H^2 \oplus \theta(z)H^2 = H^2(\Gamma_w) \oplus z(H^2 \oplus \theta_1(z)H^2).$$

We divide the proof into two subcases.

Subcase 1.1. Assume that $\theta_1(z)M_\theta \subset \theta(z)H^2$. Then $M_\theta \subset zH^2$. Hence $H^2(\Gamma_w) \subset N$. For each nonnegative integer n, let

$$L_n = \{f(z) \in H^2(\Gamma_z) : w^n f(z) \in N\}.$$

Then $1 \in L_n$, L_n is a nonzero closed subspace of $H^2(\Gamma_z) \oplus \theta(z)H^2(\Gamma_z)$, and $T_z^* L_n \subset L_n$. By (4.2),

$$w^n \varphi(z) L_n \subset \varphi(z) N \subset N \oplus \theta(z)H^2,$$

so we have

$$\varphi(z) L_n \subset L_n \oplus \theta(z)H^2(\Gamma_z).$$

By (4.4) and Corollary 3.6, $L_n = H^2(\Gamma_z) \oplus \theta(z)H^2(\Gamma_z)$. Hence

$$w^n (H^2(\Gamma_z) \oplus \theta(z)H^2(\Gamma_z)) \subset N$$

for every $n \geq 0$. Therefore

$$H^2 \oplus \theta(z)H^2 = \sum_{n=0}^{\infty} w^n (H^2(\Gamma_z) \oplus \theta(z)H^2(\Gamma_z)) \subset N.$$

By (4.1), $H^2 \oplus \theta(z)H^2 = M_\theta \oplus N$, so that $M_\theta = \{0\}$. This contradicts $[S_z, S_w^n] \neq 0$.

Subcase 1.2. Assume that $\theta_1(z)M_\theta \not\subset \theta(z)H^2$. By (4.5), for every $g \in M_\theta$ we can write

$$(4.6) \quad g = f_g(w) \oplus z h_g(z, w),$$

where $f_g \in H^2(\Gamma_w)$ and $h_g \in H^2 \oplus \theta_1(z)H^2$. Since $\theta_1(z)M_\theta \subset M$, we have

$$\theta_1(z) g = \theta_1(z) f_g(w) \oplus z \theta_1(z) h_g(z, w) \in M = M_\theta \oplus \theta(z)H^2,$$

so that $\theta_1(z) f_g(w) \in M_\theta$. Since $\theta_1(z)M_\theta \not\subset \theta(z)H^2$, $f_g(w) \not\equiv 0$ for some $g \in M_\theta$. Then $\{f_g(w) : g \in M_\theta\} \neq \{0\}$. Since $wM_\theta \subset M_\theta$, by (4.6) $\{f_g(w) : g \in M_\theta\}$ is a nonzero T_w-invariant subspace of $H^2(\Gamma_w)$. Hence there is a one variable inner function $q(w)$ such that

$$(4.7) \quad q(w)H^2(\Gamma_w) = \{f_g(w) : g \in M_\theta\}.$$
Since $\theta_1(z)\{f_g(w) : g \in M_\theta\} \subset M_\theta$, we have

$$\theta_1(z)q(w)H^2(\Gamma_w) \subset M_\theta. \tag{4.8}$$

If $q(w)$ is constant, then $\theta_1(z) \in M_\theta$ and

$$\theta(z)H^2(\Gamma_z) \subset \mathbb{C} \cdot \theta_1(z) + \theta(z)H^2(\Gamma_z) \subset M \cap H^2(\Gamma_z),$$

so that $\theta(z)H^2(\Gamma_z) \neq M \cap H^2(\Gamma_z)$. This is a contradiction. Hence $q(w)$ is nonconstant. By (4.6) and (4.7), we get

$$q(w)H^2(\Gamma_w) \perp M_\theta. \tag{4.9}$$

For each nonnegative integer n, let

$$L_n = \{ f(z) \in H^2(\Gamma_z) : \theta(z)H^2(\Gamma_z) : f(z)w^nq(w) \in M_\theta \}. \tag{4.10}$$

By (4.8), $\theta_1(z) \in L_n$. Since $zM_\theta \subset M_\theta \oplus \theta(z)H^2$, $L_n \oplus \theta(z)H^2(\Gamma_z)$ is an invariant subspace of $H^2(\Gamma_z)$. By (4.3), we have $T^*_zL_n \subset L_n$. By (4.4) and Corollary 3.8, $L_n = H^2(\Gamma_z) \oplus \theta(z)H^2(\Gamma_z)$. Hence

$$w^nq(w)(H^2(\Gamma_z) \oplus \theta(z)H^2(\Gamma_z)) \subset M_\theta$$

for every $n \geq 0$. Thus we get

$$q(w)(H^2 \oplus \theta(z)H^2) \subset M_\theta. \tag{4.11}$$

By (4.9), $H^2(\Gamma_w) \cap q(w)H^2(\Gamma_w) \subset N$. For each $\psi(w) \in H^2(\Gamma_w) \cap q(w)H^2(\Gamma_w)$, let

$$L_\psi = \{ f(z) \in H^2(\Gamma_z) : \theta(z)H^2(\Gamma_z) : f(z)\psi(w) \in N \}.$$

Then $1 \in L_\psi$, and in the same way as Subcase 1.1, L_ψ is a nonzero closed subspace of $H^2(\Gamma_z) \oplus \theta(z)H^2(\Gamma_z)$ such that $T^*_zL_\psi \subset L_\psi$ and $\varphi(z)L_\psi \subset L_\psi \oplus \theta(z)H^2(\Gamma_z)$. Hence by (4.4) and Corollary 3.6, $L_\psi = H^2(\Gamma_z) \oplus \theta(z)H^2(\Gamma_z)$. Therefore

$$\psi(w)(H^2(\Gamma_z) \oplus \theta(z)H^2(\Gamma_z)) \subset N$$

for every $\psi(w) \in H^2(\Gamma_w) \cap q(w)H^2(\Gamma_w)$, and hence

$$H^2 \oplus \theta(z)H^2 \subset q(w)(H^2 \oplus \theta(z)H^2) \subset N. \tag{4.12}$$

Since $H^2 \oplus \theta(z)H^2 = M_\theta \oplus N$, by (4.10) and (4.11) we get

$$N = (H^2 \oplus \theta(z)H^2) \cap q(w)(H^2 \oplus \theta(z)H^2).$$

By [6], this shows that $[S_z, S^w_z] = 0$.

Case 2. Suppose that $\theta(0) \neq 0$. Let $\varphi'(z) = \varphi(z) - \langle \varphi, \theta \rangle \theta(z)$. Then $S_\varphi = S_{\varphi'}$, so that we may assume that $\varphi \perp \theta$. Write

$$\varphi(z) = \varphi_1(z) + \theta(z)z\varphi_2(z), \tag{4.13}$$

where $\varphi_1 \in H^2(\Gamma_z) \cap \theta H^2(\Gamma_z)$ and $\varphi_2 \in H^2(\Gamma_z)$. By (4.4), $\varphi_1(z) \neq 0$. Since $\theta(0) \neq 0$, $T^*_z\varphi_1(z) \neq 0$. For each $h \in N$, by (4.2) we can write

$$\varphi h = f_h + \theta g_h \in N \oplus \theta H^2.$$
Applying \(T^*_z \) for the both side of the above, we have
\[
\varphi T^*_z h + h(0, w)T^*_z \varphi = T^*_z f_h + g(0, w)T^*_z \theta + \theta T^*_z g_h.
\]
Hence by (4.12),
\[
\varphi T^*_z h = -h(0, w)T^*_z \varphi + T^*_z f_h + g_h(0, w)T^*_z \theta + \theta T^*_z g_h
\]
\[
= -h(0, w)T^*_z \varphi_1 + T^*_z f_h + g_h(0, w)T^*_z \theta + \theta(T^*_z g_h - h(0, w)\varphi_2).
\]
Note that
\[
-h(0, w)T^*_z \varphi_1 + T^*_z f_h + g_h(0, w)T^*_z \theta \perp \theta H^2.
\]
Since \(h \in N \), we have \(T^*_z h \in N \), so that by (4.2) we have
\[
-h(0, w)T^*_z \varphi_1 + T^*_z f_h + g_h(0, w)T^*_z \theta \in N.
\]
Since \(f_h \in N \), also we have \(T^*_z f_h \in N \) and
\[
(4.13) \quad -h(0, w)T^*_z \varphi_1 + g_h(0, w)T^*_z \theta \in N.
\]
Write
\[
\Theta(z) = \theta^2(z) - \theta(0)\theta(z).
\]
We have
\[
T^*_z = T^*_{\theta^2-\theta(0)\theta} = T^*_{\Theta}.
\]
Since
\[
T^*_z N \subset N,
\]
\[
-h(0, w)(T^*_z \varphi_1 + aT^*_z \theta) + g_h(0, w)T^*_z \theta \in N.
\]
Since \(\varphi_1 \in N \subset H^2 \circ \theta H^2 \), we have \(T^*_z \varphi_1 = 0 \). Since \(T^*_z \theta = -\theta(0) \), we get
\[
ah(0, w) - \theta(0)g(0, w) \in N.
\]
Since \(\theta(0) \neq 0 \),
\[
ah(0, w) - g(0, w) \in N.
\]
Thus we get
\[
ah(0, w) - g(0, w) \perp \theta(z)H^2.
\]
Because \(\theta(0) \neq 0 \), we have \(ah(0, w) - g(0, w) = 0 \). Hence by (4.9),
\[
h(0, w)T^*_z \varphi_1(z) \in N.
\]
Note that \(T^*_z \varphi_1(z) \neq 0 \). In the same way as Subcase 1.2,
\[
h(0, w)(H^2(\Gamma_z) \circ \theta(z)H^2(\Gamma_z)) \subset N \subset H^2 \circ \theta(z)H^2
\]
for every \(h \in N \). Since \(T^*_w N \subset N \) and \(N \neq \{0\} \), \(\{h(0, w) : h \in N\} \) is a nontrivial \(T^*_w \)-invariant subspace of \(H^2(\Gamma_w) \), so that
\[
\{h(0, w) : h \in N\} = H^2(\Gamma_w) \circ q(w)H^2(\Gamma_w)
\]
for either nontrivial inner function \(q(w) \) or \(q(w) = 0 \). Hence
\[
(H^2 \circ \theta(z)H^2) \circ q(w)(H^2 \circ \theta(z)H^2) \subset N.
\]
For every \(f \in N \), write
\[
f = \sum_{n=0}^{\infty} f_n(w)z^n.
\]
Since \(T_n^* N \subset N \), \(f_n(w) \in H^2(\Gamma w) \oplus q(w)H^2(\Gamma w) \) for every \(n \geq 0 \). Hence
\[
N \subset (H^2 \oplus \theta(z)H^2) \oplus q(w)(H^2 \oplus \theta(z)H^2).
\]
Therefore
\[
N = (H^2 \oplus \theta(z)H^2) \oplus q(w)(H^2 \oplus \theta(z)H^2).
\]
This shows that \([S_z, S_w^*] = 0\). This completes the proof. \(\square \)

References

Kei Ji Izuchi
Department of Mathematics
Niigata University
Niigata 950-2181, Japan
E-mail address: izuchi@math.sc.niigata-u.ac.jp

Kou Hei Izuchi
Faculty of Education
Yamaguchi University
Yamaguchi 753-8513, Japan
E-mail address: kh.izuchi@gmail.com