RESTRICTED FLEXIBLE ALGEBRAS

YOUNGSO KO* AND HYO CHUL MYUNG+

1. Introduction

An algebra A with multiplication denoted by xy over a field F is called flexible if it satisfies the flexible law $(xy)x = x(yx)$ for all $x, y \in A$. For an element x of A, let L_x and R_x denote the left and right multiplications in A by x. Following Schafer's work [13] on restricted noncommutative Jordan algebras of characteristic $p > 2$, we call a flexible algebra of characteristic $p > 2$ restricted if A is strictly power-associative and satisfies

$$(1) \quad L_x^p = L_x \quad \text{or} \quad R_x^p = R_x$$

for all $x \in A$. All algebras considered in this note are assumed to be finite-dimensional. Recall that a flexible algebra is called a noncommutative Jordan algebra if it satisfies the Jordan identity $(x^2 y)x = x^2 (yx)$. Well known noncommutative Jordan algebras are the commutative Jordan and alternative algebras which are shown to be restricted for characteristic > 0 [4]. There exist simple flexible power-associative algebras of characteristic > 2 which are not noncommutative Jordan ([6] and [8]). An example of a simple flexible algebra of characteristic $p > 0$ which is not restricted has been given by Schafer [13].

It is the purpose of this note to extend the results of Schafer [13] for restricted noncommutative Jordan algebras to restricted flexible algebras. Since flexible power-associative algebras of characteristic 0 have a satisfactory structure theory and enjoy those properties constrained by the restricted identity (1), we may regard those algebras of characteristic 0 as restricted algebras.

2. Nodal algebras

Received September 10, 1987.

*Supported by the Ministry of Education, Korea in 1987.
+Supported in part a grant under the UNI Distinguished Scholar Awards, Spring 1987.
A power-associative algebra A over F with identity element 1 is said to be nodal in case every element of A is of the form $\alpha 1 + z$, where $\alpha \in F$ and z is nilpotent, and A is not of the form $A = F1 + N$ for a nilsubalgebra N of A. It is well known that there are no nodal algebras which are alternative of arbitrary characteristic, commutative Jordan of characteristic $\neq 2$, or noncommutative Jordan of characteristic 0 (Jacobson [3] and McCrimmon [9]). However, nodal noncommutative Jordan algebras of characteristic $p > 0$ do exist, and Kokoris [7] gave the first construction of such algebras, called Kokoris algebras, which have also been shown to be useful for the study of simple Lie algebras of prime characteristic (see Schafer [14] and Strade [16], for example). Scribner [15] has constructed a nodal noncommutative Jordan algebra of infinite dimension. Schafer [13] has proven that Kokoris algebras cannot be restricted by showing that there are no nodal, restricted noncommutative Jordan algebras of characteristic $p > 2$. We here extend this result to restricted flexible algebras. Attached to an algebra A over a field F of characteristic $\neq 2$ is the commutative algebra denoted by A^+ with multiplication $x \cdot y = \frac{1}{2}(xy + yx)$ defined on the vector space A. We begin with

Lemma 1. Let A be a strictly power-associative algebra with identity element 1 over a field F of characteristic $\neq 2$ such that every element of A is of the form $\alpha 1 + z$ for $\alpha \in F$ and a nilpotent element z in A. Then A is the vector space direct sum $A = F1 + N$ where N is a subspace of nilpotent elements in A and N^+ is the maximal nil ideal of A^+.

Proof. Let N denote the set of nilpotent elements in A and let M be a maximal ideal of A^+. Then, $M \subseteq N$, since if $M \subseteq N$, then there is an element $\alpha 1 + z$ in M for $\alpha \neq 0$ and a nilpotent element z, and hence $\alpha 1 + z$ is invertible by power-associativity. Thus A^+/M is a simple commutative, strictly power-associative algebra of degree one. If the characteristic of F is greater than two, then Oehmke [11] has shown that such an algebra must be a field, and if the characteristic is zero, then the same holds by a result of Albert [1]. Therefore, A^+/M is a field, and it must be that $M = N$, which is a subspace of A.

Extending the known result for commutative Jordan algebras, as an immediate consequence of Lemma 1, we have

Corollary 2. There is no nodal commutative strictly power-associative
algebra of characteristic ≠ 2.

Theorem 3. There is no nodal restricted flexible algebra over a field of characteristic ≠ 2.

Proof. Suppose that such a nodal algebra \(A \) exists. It is readily seen that any homomorphic image of a restricted algebra is also restricted. Note also that any nonzero homomorphic image of a nodal algebra is also nodal (Schafer [12, p.116]). By Lemma 1, we can write \(A = F_1 + N \) where \(N \) is a subspace of \(A \) and is the set of all nilpotent elements in \(A \). If \(M \) denotes a maximal ideal of \(A \), then as in the proof of Lemma 1 we have \(M \subseteq N \). Then, the quotient algebra \(\overline{A} = A/M \) is a simple restricted flexible algebra of degree one, and by a result of Kleinfeld and Kokoris [5] \(\overline{A}^+ \) must be an associative algebra. Hence, \(\overline{A} \) is a nodal restricted noncommutative Jordan algebra, which contradicts the result of Schafer [13] that such algebras do not exist.

3. **Semisimple algebras**

A power-associative algebra \(A \) is called *semisimple* if the maximal nil ideal of \(A \) is zero. Oehmke [10] has proven that any semisimple flexible strictly power-associative algebra \(A \) over \(F \) of characteristic ≠ 2 has an identity element and is the direct sum of simple ideals, and that any simple such algebra of characteristic ≠ 2, 3 is one of the algebras: a commutative Jordan algebra (for degree ≥ 3); a quasi-associative algebra; a flexible algebra of degree 2; and an algebra of degree one. We make use of this result to prove the following structure theorem.

Theorem 4. Any semisimple restricted flexible algebra \(A \) over a field \(F \) of characteristic ≠ 2, 3 is the direct sum \(A = A_1 \oplus \cdots \oplus A_n \) of simple ideals \(A_i \) of \(A \). If \(A \) is simple, then \(A \) is one of the following:

(a) a simple commutative Jordan algebra of characteristic ≠ 2 (for degree ≥ 3),

(b) a simple restricted flexible algebra of degree two,

(c) an algebra \(B(\lambda) \) with multiplication \(x*y = \lambda xy + (1-\lambda)yx \) defined on a simple associative algebra \(B \) over \(F \) for a fixed \(\lambda \neq 1/2 \) in the prime field of \(F \), where \(xy \) denotes the product in \(B \),

(d) a field (for degree one).

Proof. The first part and the algebras described in (a) and (b) fol-
low from the result of Oehmke noted above. If A is a simple quasi-associative algebra over F, then it is shown in [13] that the restricted condition (1) gives the algebra described by (c). Assume then that A is a simple algebra of degree one. Since A cannot be nodal by Theorem 3, by a result of Block [2] we conclude that A^+ is a simple algebra of degree one which must be a field. Here we have used the fact that any scalar extension of a restricted algebra is also restricted (see [13, p.143]). Therefore, by Lemma 1, A is a field also in this case. This completes the proof.

By the known classification, all algebras but case (b) in Theorem 4 are completely described. It is not known whether there exists a simple restricted flexible algebra (of degree 2) which is not noncommutative Jordan. We note that if A is noncommutative Jordan, then one of the two restricted conditions in (1) implies the other. This is due to the fact that a commutative Jordan algebra is restricted and flexibility is equivalent to the identity $L_x R_x = R_x L_x$. In fact, let $T_x = \frac{1}{2} (L_x + R_x)$ denote the right multiplication in the Jordan algebra A^+ by x. Since any Jordan algebra of characteristic $p > 0$ is restricted [4], $\frac{1}{2} (L_x^+ + R_x^+)$ = $T_x^+ = T_x^+ = \frac{1}{2} (L_x^+ + R_x^+)$, since L_x commutes with R_x. Hence one of the conditions (1) implies the other.

References

Restricted flexible algebras

Seoul National University
Seoul 151, Korea
and
University of Northern Iowa
U. S. A