MAPPING THEOREMS FOR LOCALLY EXPANSIVE OPERATORS

JONG SOOK BAE*

1. Introduction

It is well-known fact [2, p.62] that if a local homeomorphism of a Banach space \(X \) into a Banach space \(Y \) is a local expansion, in the sense that for a continuous nonincreasing function \(c : [0, \infty) \to (0, \infty) \) with \(\int_0^\infty c(t)dt = \infty \), each point \(x \) of \(X \) has a neighborhood \(U_x \) such that

\[
c(\max \{ \|u\|, \|v\| \}) \|u-v\| \leq \|Tu-Tv\|
\]

for each \(u, v \) in \(U_x \), then \(T(X) = Y \).

Kirk and Schöneberg [3], and Ray and Walker [5] proved that a similar result can be obtained within the class of mappings whose graphs are closed subsets of \(X \times Y \). Also Torrejon [6] obtained the same result without assuming that \(c \) is nonincreasing. Moreover, Bae and Yie [1] proved a more stronger result by giving the precise range of the operator \(T \), that is, they proved that under the same situation \(T(B(0; K)) \) contains \(B(T(0); \int_0^K c(t)dt) \).

This note is a continuation of the above program; by developing Torrejon's method, we replace the domain of \(c \) by \(X \) instead of \([0, \infty) \) and give more general results which contain all the above mentioned results of [1, 2, 3, 5, 6].

First we give some notations and definitions.

If \(D \) is a subset of \(X \), then \(\overline{D} \) and \(\partial D \) denote, respectively, the closure and boundary of \(D \) in \(X \). Recall that a mapping \(T : D \to Y \) is said to have closed graph if for each sequence \(\{x_n\} \subseteq D \) with \(x_n \to x \in D \) and \(T x_n \to y \) as \(n \to \infty \), it follows that \(Tx = y \). We denote by \(B(x, r) \) the set \(\{y ; \|y-x\| < r \} \), and conveniently we set \(B(x; \infty) = X \) if \(x \in X \).

Received October 24, 1986.

* Partially supported by the Korea Science and Engineering Foundation in 1985-86.
A continuous curve \(h : [0, s] \longrightarrow X, 0 \leq s < \infty \), is rectifiable if there exists a constant \(M > 0 \) such that for any subdivision of \([0, s]\) of the form
\[
0 = t_0 < t_1 < \cdots < t_n = s
\]
we have
\[
\sum_{i=1}^{n} \| h(t_i) - h(t_{i-1}) \| \leq M.
\]
The least such constant \(M \) is called the length of the curve. A continuous curve \(h : [0, s] \longrightarrow X \) is said to be parametrized by arc length if for any \(t, \ 0 \leq t \leq s \), the length of the curve \(h([0, t]) \) is exactly \(t \).

Remark 1. Note that if \(h : [0, s] \longrightarrow X \) is a parametrized curve by arc length with \(s < \infty \), then \(\lim_{t \to s^-} h(t) \) always exists and \(h \) can be extended to \([0, s]\).

A nonlinear operator \(T \) mapping a subset \(D \) of \(X \) into a metric space \(Y \) is said to be locally \(m \)-expansive, where \(m : D \longrightarrow (0, \infty) \) is a continuous function, if each point \(x \) in \(D \) has a neighborhood \(U_x \) such that
\[
(\ast) \quad \min \{ m(u), m(v) \} \| u - v \| \leq d(Tu, Tv)
\]
for each \(u, v \) in \(U_x \).

Following Menger [4], a metric space \(Y \) is said to be metrically convex if for each \(x, y \) in \(Y \) with \(x \neq y \) there exists \(z \) in \(Y \), distinct from \(x \) and \(y \), such that \(d(x, y) = d(x, z) + d(z, y) \).

2. Main results

Now we state our first theorem.

Theorem 1. Let \(X \) be a Banach space, \(D \) an open subset of \(X \), and let \(Y \) be a complete metric space with metric convexity. Let \(m : D \longrightarrow (0, \infty) \) be a continuous function such that
\[
(\ast\ast) \quad \int_0^\infty m(h(t)) \, dt = \infty \quad \text{for any continuous curve } h : [0, \infty) \longrightarrow D
\]
parametrized by arc length.

Let \(T : D \longrightarrow Y \) be a locally \(m \)-expansive mapping on \(D \) having closed graph. If \(T \) maps open subsets of \(D \) onto open subsets of \(Y \), then for each \(y \in Y \) the followings are equivalent.
There exists $x_0 \in D$ such that $d(Tx_0, y) \leq d(Tx, y)$ for all $x \in \partial D$.

Proof. We only need to prove that (2) \implies (1). We let $g : [0, d(Tx_0, y)] \to Y$ be an isometry such that $g(0) = Tx_0$ and $g(d(Tx_0, y)) = y$. The existence of g is assured by Menger's result [4]. Let M denote the set of all τ in $[0, d(Tx_0, y)]$ for which there exists a unique continuous curve $h : [0, \tau] \to D$ such that $h(0) = x_0$ and $Th(t) = g(t)$ for each t, $0 \leq t \leq \tau$. Let $\tau_0 = \sup \{\tau ; \tau \in M\}$. Then $\tau_0 > 0$ since T is assumed to be an open and locally m-expansive mapping on D. Now we claim that $\tau_0 \in M$, so that we conclude that $\tau_0 = d(Tx_0, y)$ since M is an open subset of $[0, d(Tx_0, y)]$, and hence $Th(\tau_0) = y \in T(D)$. Since $\tau_0 = \sup \{\tau ; \tau \in M\}$, there is a unique continuous curve $h : [0, \tau_0] \to D$ with $h(0) = x_0$ and $Th(t) = g(t)$ for each t, $0 \leq t < \tau_0$.

Lemma 1. For each $\tau \in [0, \tau_0)$, the curve $h|_{[0, \tau]}$ is rectifiable.

Proof. Since $[0, \tau]$ is compact, $\inf \{m(h(t)) ; 0 \leq t \leq \tau\} = m > 0$. Then it is easily seen that for any subdivision

$$0 = t_0 < t_1 < \cdots < t_n = \tau$$

of $[0, \tau]$ we have

$$\sum_{i=1}^{n} \|h(t_i) - h(t_{i-1})\| \leq \frac{\tau}{m},$$

so that $h|_{[0, \tau]}$ is rectifiable.

Continuation of the proof of Theorem 1. By Lemma 1, for each t, $0 \leq t < \tau_0$, the length of the curve $h|_{[0, 0]}$ exists, and we denote it by $s(t)$. Then note that $s : [0, \tau_0) \to [0, \infty)$ is a continuous strictly increasing function. To complete our proof, we need another lemma.

Lemma 2. For each fixed $t \in [0, \tau_0)$, we have

$$m(h(t))D^+s(t) \leq 1,$$

where D^+v is the right-upper Dini derivative of the function v.

Proof. For any given $\varepsilon > 0$, we have a neighborhood $U_{h(t)}$ of $h(t)$ in D such that $m(x) \geq (1 - \varepsilon)m(h(t))$ for all $x \in U_{h(t)}$ and (*) holds. Now choose $r > 0$ such that for all t' with $t \leq t' \leq t + r < \tau_0$, $h(t') \in U_{h(t)}$. Also we can choose a subdivision
Jong Sook Bae

$$t = t_0 < t_1 < \cdots < t_n = t + r$$
of $[t, t+r]$ such that

$$s(t+r) - s(t) \leq (1+\varepsilon) \sum_{i=1}^{n} ||h(t_i) - h(t_{i-1})||.$$

Therefore we have

$$(1-\varepsilon)m(h(t)) (s(t+r) - s(t)) \leq (1+\varepsilon) \sum_{i=1}^{n} d(Th(t_i), Th(t_{i-1})) = (1+\varepsilon) r.$$\[183x351]150x341\[150x341]F(t) = \int_{0}^{s(t)} m(h(t^*(s))) ds,$$\[65x391]s \text{ continuous and strictly increasing, its inverse exists, say } t^* : [0, s_0) \rightarrow [0, \tau_0).$$

Then note that $h(t^*(s))$ is a parametrized curve by arc length with parameter s. Now set

$$F(t) = \int_{0}^{s(t)} m(h(t^*(s))) ds,$$\[0x391]0 \leq t < \tau_0.$$\[65x391]By Lemma 2, we have $D^+ F(t) = m(h(t)) D^+ s(t) \leq 1,$ thus we obtain, for all t, $0 \leq t < \tau_0$,\[184x279]fSCt) \int_{0}^{s(t)} m(h(t^*(s))) ds \leq t.$$\[65x262]Therefore the condition (***) gives that $s_0 < \infty,$ which also yields that \lim_{t \rightarrow \tau_0} h(t) = x \in D$ exists by Remark 1. Now since T has closed graph,\[77x139]As a direct consequence of Theorem 1, we have the following

Corollary 1. Let X be a Banach space and Y a complete metric space with metric convexity. Let $T : X \rightarrow Y$ be a locally m-expansive mapping having closed graph, where $m : X \rightarrow (0, \infty)$ is a continuous function such
that \(\int_0^\infty m(h(t))dt = \infty \) for every continuous curve \(h : [0, \infty) \to X \) parametrized by arc length. If \(T \) maps open subsets of \(X \) onto open subsets of \(Y \), then \(T(X) = Y \).

Remark 2. Note that if \(c : [0, \infty) \to (0, \infty) \) is a continuous function for which \(\int_0^\infty c(t)dt = \infty \), then the function \(m(x) = c(\|x\|) \) satisfies the condition (**). Therefore Theorem 1 contains the results of [3] and [6].

More generally we can give the precise range of the operator \(T \) as in [1].

Theorem 2. Let \(X \) be a Banach space, \(D \) an open subset of \(X \), and let \(Y \) be a complete metric space with metric convexity. Let \(x_0 \) be in \(D \), and \(m : D \to (0, \infty) \) a continuous function such that there is an \(N > 0 \) such that

\[
(***) \quad \text{if } h : [0, s) \to D, \ 0 \leq s \leq \infty, \text{ is a continuous curve parametrized by arc length for which } h(0) = x_0 \text{ and } \int_0^s m(h(t))dt < N, \text{ then it follows that } s < \infty \text{ and } \lim_{t \to s} h(t) \in D.
\]

If \(T : D \to Y \) is an open and locally \(m \)-expansive mapping having closed graph, then \(T(D) \) contains the ball \(B(Tx_0; N) \).

Proof. Let \(y \in B(Tx_0; N) \), that is, \(d(y, Tx_0) < N \). As in the proof of Theorem 1, let \(g : [0, d(Tx_0, y)] \to Y \) be an isometry with \(g(0) = Tx_0 \) and \(g(d(Tx_0, y)) = y \), and let \(M \) denote the set of all \(\tau \) in \([0, d(Tx_0, y)]\) for which there exists a unique continuous curve \(h : [0, \tau] \to D \) such that \(h(0) = x_0 \) and \(Th(t) = g(t) \) for each \(t, 0 \leq t \leq \tau \). Let \(\tau_0 = \sup \{ \tau ; \tau \in M \} \). As in the proof of Theorem 1, we get \(\tau_0 > 0 \) and we claim that \(\tau_0 \in M \), so that we conclude that \(\tau_0 = d(Tx_0, y) \) and \(Th(\tau_0) = y \in T(D) \). Also let \(h : [0, \tau_0) \to D \) be a unique continuous curve with \(h(0) = x_0 \) and \(Th(t) = g(t) \) for each \(t, 0 \leq t < \tau_0 \). Also by Lemma 1, we let \(s(t) \) be the length of the curve \(h|_{[0, t]} \) for each \(t \in [0, \tau_0) \), and let \(s_0 = \sup \{ s(t) ; 0 \leq t < \tau_0 \} \). Now we know that the inverse \(t^* : [0, s_0) \to [0, \tau_0) \) of \(s \) exists. By applying Lemma 2, we get for each \(t, 0 \leq t < \tau_0 \),

\[
\int_0^{s(t)} m(h(t^*(s)))ds \leq t,
\]
so that
\[\int_0^{t_0} m(h(t^*(s))) \, ds < \tau_0 \leq d(Tx_0, y) < N. \]

By the condition (***)", we have \(s_0 < \infty \) and \(\lim_{t \to -s_0} h(t^*(s)) \in D \). Therefore \(\lim_{t \to -s_0} h(t) = \lim_{t \to s_0} h(t^*(s)) = x \in D \) exists. Thus by defining \(h(t^0) = x \), we have \(\tau_0 \in M \), which completes our proof.

Now if we put \(D = B(x_0; K) \), we have the following.

Corollary 2. Let \(X \) be a Banach space and \(Y \) a complete metric space with metric convexity. Let \(x_0 \in X, \ K \geq 0 \), and let \(m : B(x_0; K) \to (0, \infty) \) be a continuous function such that there is an \(N > 0 \) such that

\[(***)' \text{ if } h : [0, s) \to B(x_0; K), \ 0 < s < \infty, \ \text{is a continuous curve parametrized by arc length for which } h(0) = x_0 \text{ and } \int_0^s m(h(t)) \, dt < N, \text{ then it follows that } s < \infty \text{ and } \lim_{t \to s} \|h(t) - x_0\| < K. \]

If \(T : B(x_0; K) \to Y \) is an open and locally \(m \)-expansive mapping having closed graph, then \(T(B(x_0; K)) \) contains \(B(Tx_0; N) \).

Remark 3. Note that if \(c : [0, K) \to (0, \infty) \) is continuous and if \(\int_0^K c(t) \, dt = N \), then the function \(m(x) = c(\|x - x_0\|) \) satisfies the condition (***)'. Therefore for locally expansive mappings, Theorem 2 is a generalized version of results of [1, 2, 3, 5, 6]. It is interesting to point out that Corollary 1 is also an immediate consequence of Corollary 2. Also note that all results in this paper can be applied to the class of locally strongly \(\phi \)-accretive operators as in [1].

References

Chungnam National University
Daejeon 300-31, Korea