FIXED POINT THEOREMS OF GENERALIZED NONEXPANSIVE MAPS

JONG SOOK BAE

1. Introduction

Let \((C, d)\) be a metric space. A map \(T: C \to C\) is said to be generalized nonexpansive if, for any \(x, y \in C\),

\[
d(Tx, Ty) \leq a_1 d(x, y) + a_2 d(x, Tx) + a_3 d(y, Ty) \\
+ a_4 d(x, Ty) + a_5 d(y, Tx),
\]

where \(a_1 \geq 0\) and \(\sum_{i=1}^{5} a_i \leq 1\).

In [10], Goebel, Kirk and Shimi proved that if \(T\) is a continuous generalized nonexpansive selfmap of a nonempty closed convex bounded subset \(C\) of a uniformly convex Banach space, then \(T\) has a fixed point. Bogin [4] generalized this result for a weakly compact convex subset \(C\) having normal structure in a Banach space without assuming the continuity of \(T\). In this paper, we study various types of maps which are particular to (1) by classifying \(a_i\)'s, and obtain several new fixed point theorems. Especially, in section 2, we classify \(a_i\)'s, and study various cases of (1) without assuming normal structure. In section 3, we generalize the result of [4] for the case that \(C\) has asymptotic normal structure, and obtain new fixed point theorems for some variations of (1), and common fixed point theorems for a commuting family of generalized nonexpansive maps.

2. Generalized nonexpansive maps

By interchanging \(x\) and \(y\), (1) is equivalent to the condition

\[
d(Tx, Ty) \leq a d(x, y) + b d(x, Tx) + d(y, Ty) \\
+ c d(x, Ty) + d(y, Tx),
\]

for all \(x, y \in C\), where \(a, b, c \geq 0\) and \(a + 2b + 2c \leq 1\), by putting \(a = a_1\).
If \(a+2b+2c<1 \) and \(C \) is complete, a number of authors showed that \(T \) has a unique fixed point, and any iteration \(\{ T^n x \} \) converges to the fixed point of \(T \) for each \(x \in C \). Therefore, we may assume that \(a+2b+2c=1 \). Then the following cases can be occurred:

- **Case I.** \(a=1, \ b=c=0 \).
- **Case II.** \(a=c=0, \ b=\frac{1}{2} \).
- **Case III.** \(b>0, \ c>0 \).
- **Case IV.** \(a>0, \ b>0, \ c=0 \).
- **Case V.** \(b=0, \ c>0 \) (this case contains the case \(a=b=0 \)).

Case I. \(a=1, \ b=c=0 \). In this case, the map \(T \) is said to be nonexpansive. In 1965, Browder [6] showed that any nonexpansive selfmap of a closed convex bounded subset \(C \) of a Hilbert space has a fixed point by using monotone operator theory. Also, in the same year, Kirk [16] obtained the same result for a closed convex bounded subset \(C \) of a reflexive Banach space provided that \(C \) has normal structure.

The concept of normal structure was introduced by Brodskii and Mil'man [5]. A nonempty closed convex bounded subset \(C \) of a Banach space is said to have normal structure if, for any closed convex subset \(C_0 \) of \(C \) which has more than one point, there exists a point \(x \in C_0 \) satisfying

\[
\sup \{ \| x-y \| ; \ y \in C_0 \} < \delta(C_0),
\]

where \(\delta(C_0) \) denotes the diameter of the set \(C_0 \).

Moreover, if \(C \) is a weakly compact convex subset of a Banach space and \(C \) has asymptotic normal structure, then \(T \) has a fixed point by [2]. But, Alspach [1] gave an example of a weakly compact convex subset of \(L_1[0,1] \) that fails to have the fixed point property for nonexpansive maps.

If \(T \) is affine, that is, \(T(\lambda x+(1-\lambda)y)=\lambda Tx+(1-\lambda) Ty, \ 0 \leq \lambda \leq 1 \), then \(T \) is weakly continuous. Therefore, if \(C \) is weakly compact and convex, and if \(T \) is an affine nonexpansive selfmap of \(C \), then \(T \) has a fixed point by the Tychonoff fixed point theorem. Otherwise, if we impose a condition similar to that \(T \) is affine, then we have the following
THEOREM 2.1. Let C be a nonempty weakly compact convex subset of a Banach space, and $T : C \to C$ be nonexpansive. Suppose that there is a strictly increasing continuous function $\gamma : [0, \infty) \to [0, \infty)$ with $\gamma(0) = 0$ such that, for all $x, y \in C$ and $0 \leq \lambda \leq 1$,

$$\|T(\lambda x + (1-\lambda)y) - \lambda x - (1-\lambda)y\| \leq \gamma(\|x - Tx\| + \|y - Ty\|).$$

Then T has a fixed point.

Proof. Choose a decreasing sequence $\{\varepsilon_n\}$ of positive reals such that $\varepsilon_n \to 0$ as $n \to \infty$, and $\gamma(2\varepsilon_{n+1}) \leq \varepsilon_n$ for $n \geq 1$. By the Banach contraction principle, we can choose $x_n \in C$ such that $\|Tx_n - x_n\| \leq \varepsilon_n$. Since C is weakly compact, we may assume that x_n converges weakly to a point $x \in C$.

Call a sequence $\{y_n\}$ a c-subsequence (see [12]) of $\{x_n\}$ provided that there is a sequence of integers $1 = p_1 \leq q_1 < p_2 \leq q_2 < \ldots$ and coefficients $\alpha_i \geq 0$ such that

$$\sum_{i=p_n}^{q_n} \alpha_i = 1, \quad y_n = \sum_{i=p_n}^{q_n} \alpha_i x_i.$$

Since every closed convex subset of a Banach space is weakly closed, we may choose a c-subsequence $\{y_n\}$ of $\{x_n\}$ such that y_n converges strongly to x. Then, by (3), and by using induction, we get

$$\|Ty_n - y_n\| = \|T\left(\sum_{i=p_n}^{q_n} \alpha_i x_i\right) - \sum_{i=p_n}^{q_n} \alpha_i x_i\|$$

$$\leq \gamma(2\varepsilon_{p_n}) \leq \varepsilon_{p_n-1}.$$

By setting $n \to \infty$, we have $\lim \|Ty_n - y_n\| = 0$, so that x is a fixed point of T.

REMARK 2.1. Under the same hypothesis of Theorem 2.1, we know that every weak cluster point of $\{S^n x\}$ is a fixed point of T for any $x \in C$, where $S_\lambda = \lambda I + (1-\lambda)T$, $0 < \lambda < 1$, since, by Ishikawa [14], S_λ is asymptotically regular. Note that every affine map satisfies (3). Also note that every nonexpansive selfmap of a closed convex bounded subset of a uniformly convex Banach space satisfies (3) by Bruck[7]. Actually, he showed that if T is a nonexpansive selfmap of a closed convex bounded subset C of a uniformly convex Banach space, then there is a strictly increasing continuous function $\alpha : [0, \infty) \to [0, \infty)$ with $\alpha(0) = 0$ such that, for all $x, y \in C$, and $0 \leq \lambda \leq 1$,

$$\|\lambda x + (1-\lambda)y\| \leq \|x - y\| - \|Tx - Ty\|.$$
Since \(C \) is bounded, we may assume that \(\alpha(t) \to \infty \) as \(t \to \infty \), so that \(\alpha^{-1} \) exists. Therefore by putting \(r(t) = \alpha^{-1}(t) + t \), \(T \) satisfies (3). Moreover, note that we can easily construct a nonexpansive map which satisfies (3), but not (3).

By putting \(\phi(x) = \|x - Tx\| \), \(x \in C \), in Theorem 2.1, the existence of a fixed point of \(T \) is equivalent to the fact that \(\phi \) attains its minimum. It is well-known that if \(\phi \) is convex, then \(\phi \) attains its minimum. Note that the condition (3) is a weakened form of the convexity of \(\phi \).

Case II. \(a = c = 0, \ b = \frac{1}{2} \). In this case, \(T \) is called a Kannan–type map. In 1973, Kannan [15] showed that every nonempty closed convex bounded subset of a reflexive Banach space having normal structure has the fixed point property for Kannan type maps. Note that every nonexpansive map is continuous, while a Kannan–type map need not be continuous. The existence of fixed points of Kannan-type maps related to close-to-normal structure. A closed convex bounded subset \(C \) of a Banach space is said to have close-to-normal structure if, for each closed convex subset \(C_0 \) of \(C \) having more than one point, there exists \(x \in C_0 \) such that \(\|x - y\| < \delta(C_0) \) for any \(y \in C_0 \). In [24], Wong showed that any nonempty weakly compact convex subset \(C \) of a Banach space has the fixed point property for Kannan-type maps if and only if \(C \) has close-to-normal structure. Furthermore, he posed a question whether every closed convex bounded subset of a reflexive Banach space has close-to-normal structure. But Tan [22] showed that the answer is negative by giving an example of a reflexive Banach space which has asymptotic normal structure, but does not have close-to-normal structure.

Now we have the following

Theorem 2.2. Any reflexive Banach space \(X \) admits an equivalent norm \(\| \|_1 \) such that any selfmap \(T \) of a nonempty closed convex bounded subset \(C \) of \(X \) satisfying, for \(x, y \in C \),

\[
\|Tx - Ty\|_1 \leq \frac{1}{2} \{\|x - Tx\|_1 + \|y - Ty\|_1\}
\]

has a unique fixed point.

Proof. By Troyanski [23], \(X \) admits an equivalent norm \(\| \|_1 \) so
that \((X, \| \cdot \|_1)\) is locally uniformly convex. Therefore with the new norm \(\| \cdot \|_1\), \(C\) has close-to-normal structure, and by [24] \(T\) has a unique fixed point.

REMARK 2.2. Note that Dulst [9] showed that every separable Banach space \(X\) admits an equivalent norm such that every nonexpansive selfmap (with the new norm) of a weakly compact convex subset of \(X\) has a fixed point. Since this new norm satisfies the Opial condition [20], the result of [9] can be applied to Kannan-type maps. Also note that every separable Banach space has an equivalent norm which is strictly convex, so that every closed convex bounded subset has close-to-normal structure.

Case III. \(b>0, c>0\). In this case, Bogin [4] showed that if \(C\) is a complete metric space, then any iteration \(\{T^n x\}\) converges to the unique fixed point of \(T\).

Case IV. \(a>0, b>0, c=0\). In this case, Gregus [11] showed that if \(C\) is a closed convex subset of a Banach space, then \(T\) has a unique fixed point. Actually, he proved that any iteration \(\{U^n x\}\) converges to the unique fixed point of \(T\), where \(Ux=(T^2x+T^3x)/2\).

Case V. \(b=0, c>0\). In this case, we have the following lemma.

Lemma 2.1. Let \((C, d)\) be a bounded metric space, and let \(T: C \rightarrow C\) be a map satisfying

\[
d(Tx, Ty) \leq ad(x, y) + cd(x, Ty) + cd(y, Tx)
\]

for all \(x, y \in C\), where \(a \geq 0\), \(c > 0\) and \(a+2c=1\). Then \(T\) is asymptotically regular, i.e., for any \(x \in C\),

\[
\lim d(T^{n+1}x, T^n x) = 0.
\]

Proof. For \(x_0 \in C\), let \(x_n = T^n x_0\). Then, for \(n \geq 1\), by (4), we get

\[
d(x_{n+1}, x_n) = d(Tx_n, Tx_{n-1}) \leq ad(x_n, x_{n-1}) + cd(x_n, Tx_n) + cd(x_{n-1}, Tx_{n-1}),
\]

so that we have

\[
d(x_{n+1}, x_n) \leq \frac{a+c}{1-c} d(x_n, x_{n-1}) = d(x_n, x_{n-1}).
\]

Therefore, the sequence \(\{d(x_{n+1}, x_n)\}\) is nonincreasing, so that \(\lim d(x_{n+1}, x_n) = r\) exists. We must show that \(r = 0\). Suppose \(r > 0\). Then there exists a positive integer \(s\) such that the diameter of \(C = d_1 < (s+\)

1) \(r/2 \). Since \(c > 0 \), there exists \(\varepsilon > 0 \) such that \(\{1 - (s+1)c^1\} (r + \varepsilon) + (s+1)rc^2/2 < r \) (this is possible for \(0 < \varepsilon \leq (s+1)rc^2/2 \)). Then there exists a positive integer \(N \) such that \(n \geq N \) implies \(r \leq d(x_{n+1}, x_n) < r + \varepsilon \).

Now we claim that, for \(n \geq 0 \) and \(k \geq 1 \)

\[d(x_{n+k+1}, x_{n+k}) \leq \{1 - (k+1)c^1\} d(x_{n+1}, x_n) + c^k d(x_{n+k+1}, x_n). \]

To prove (5), let \(k = 1 \). Then, we get, by (4),

\[d(x_{n+k}, x_{n+1}) \leq d(x_{n+1}, x_n) + cd(x_{n+k+1}, x_n), \]

which asserts (5), since \(a = 1 - 2c \). In order to use induction for \(k \), assume that (5) is true for \(k \geq 1 \). Then we have

\[
\begin{align*}
d(x_{n+k+2}, x_{n+k+1}) & \leq \{1 - (k+1)c^1\} d(x_{n+2}, x_{n+1}) + c^k d(x_{n+k+2}, x_{n+1}) \\
& \leq \{1 - (k+1)c^1\} d(x_{n+1}, x_n) + c^k \{d(x_{n+k+1}, x_n) + cd(x_{n+k+2}, x_n) + c^k d(x_{n+k+1}, x_{n+1})\} \\
& \leq \{1 - (k+1)c^1\} d(x_{n+1}, x_n) + c^k \{a(k+1) + c^k\} d(x_{n+1}, x_n) + c^k d(x_{n+k+2}, x_n) \\
& \leq \{1 - (k+2)c^k\} d(x_{n+1}, x_n) + c^k + 1 d(x_{n+k+2}, x_n),
\end{align*}
\]

by using \(d(x_{n+k+1}, x_n) \leq (k+1)d(x_{n+1}, x_n) \) and \(d(x_{n+k+1}, x_{n+1}) \leq kd(x_{n+1}, x_n) \), which proves (5).

Then, for \(n \geq N \) and \(k = s \), by (5), we have

\[
\begin{align*}
d(x_{n+s+1}, x_{n+s}) & \leq \{1 - (s+1)c^1\} (r + \varepsilon) + c^s d_1 \\
& \leq \{1 - (s+1)c^1\} (r + \varepsilon) + \frac{c^k(s+1)r}{2} \\
& < r,
\end{align*}
\]

which leads a contradiction. Therefore, we have \(r = 0 \).

In Lemma 2.1, if \(a = 0 \), then we have stronger conclusion that \(T \) is uniformly asymptotically regular, that is, \(d(T^{n+1}x, T^nx) \to 0 \) uniformly as \(n \to \infty \) for all \(x \in C \).

Lemma 2.2. Let \((C, d)\) be a bounded metric space, and let \(T : C \to C \) be a map satisfying

\[
(6) \quad d(Tx, Ty) \leq \frac{1}{2} \{d(x, Ty) + d(y, Tx)\}
\]

for all \(x, y \in C \). Then \(T \) is uniformly asymptotically regular. Moreover we have

\[
(7) \quad d(T^{n+1}x, T^nx) \leq \frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} \delta(C),
\]

where \(\delta(C) \) is the diameter of the set \(C \).
Proof. Since
\[\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \sin^{2n} x \, dx\]
converges to 0 as \(n \to \infty \), we need only to prove (7).

First we claim that, for \(n \geq 2 \),
\[
d(T^n x, T x) \leq \frac{1}{2} d(T^n x, x) + \frac{1}{2^2} d(T^{n-1} x, x) + \ldots + \frac{1}{2^n-1} d(T^2 x, x).
\]
To prove (8), for \(n = 2 \), by (6), we have
\[
d(T^2 x, T x) \leq \frac{1}{2} d(T x, T x) + \frac{1}{2} d(T^2 x, x) = \frac{1}{2} d(T^2 x, x).
\]
Assume that (8) is true for \(n - 1 \geq 2 \). Then by the assumption and (6), we obtain
\[
d(T^n x, T x) \leq \frac{1}{2} d(T^n x, x) + \frac{1}{2} d(T^{n-1} x, T x)
\leq \frac{1}{2} d(T^n x, x)
+ \frac{1}{2^n} \left(\frac{1}{2} d(T^{n-1} x, x) + \ldots + \frac{1}{2^{n-2}} d(T^2 x, x) \right)
= \frac{1}{2} d(T^n x, x) + \frac{1}{2^n} d(T^{n-1} x, x) + \ldots + \frac{1}{2^n-1} d(T^2 x, x),
\]
which asserts (8) by induction.

Next we shall prove that, for \(n \geq 1 \),
\[
d(T^{n+1} x, T^n x) \leq \frac{a_{n+1,1}}{2^n} d(T^{n+1} x, x) + \frac{a_{n+1,2}}{2^{n+1}} d(T^n x, x)
+ \ldots + \frac{a_{n+1,n}}{2^{2n-1}} d(T^2 x, x),
\]
where \(a_{n+1,k}'s \) \((1 \leq k \leq n)\) are inductively given by the rule;
\[a_{2,1} = 1\]
and, for \(n \geq 2 \),
\[a_{n+1,1} = a_{n,1},\]
\[a_{n+1,2} = a_{n,1} + a_{n,2},\]
\[\ldots\]
\[a_{n+1,n-1} = a_{n,1} + a_{n,2} + \ldots + a_{n,n-1},\]
\[a_{n+1,n} = a_{n,1} + a_{n,2} + \ldots + a_{n,n-1}.\]
To prove (9), assume that (9) is true for \(n-1\geq1\). Then, by (8), we have

\[
d(T^{n+1}x, \; T^nx) \leq \frac{a_{n-1}}{2^{n-1}}d(T^{n+1}x, \; Tx) + \frac{a_{n-2}}{2^{n-2}}d(T^nx, \; Tx) + \cdots + \frac{a_1}{2}d(T^2x, \; x) + d(Tx, \; x)
\]

\[
\leq \frac{a_{n-1}}{2^{n-1}} \left[\frac{1}{2} d(T^{n+1}x, \; x) + \frac{1}{2} d(T^nx, \; x) \right] + \cdots + \frac{a_1}{2} \left[\frac{1}{2} d(T^3x, \; x) + \frac{1}{2} d(T^2x, \; x) \right] + \frac{a_0}{2} d(T^2x, \; x)
\]

\[
= \frac{a_{n+1}}{2^n} d(T^{n+1}x, \; x) + \cdots + \frac{a_{n+1}}{2^{n-1}} d(T^2x, \; x)
\]

which proves (9) by induction.

Now, by elementary calculus, it is easy to see that

\[
\frac{a_{n+1}}{2^n} + \frac{a_{n+2}}{2^{n+1}} + \cdots + \frac{a_{n+1}}{2^{n-1}} = \frac{1}{2} \cdot \frac{3}{4} \cdots 2n - 1.
\]

Therefore, by (9), we complete the proof of (7).

Using the above lemmas, we have the following

Theorem 2.3. Let \((C, d)\) be a compact metric space, and let \(T : C \to C\) be a map satisfying (4). Then \(T\) has a fixed point, and any iteration \(\{T^nx\}\) converges to a fixed point of \(T\) for each \(x \in C\).

Proof. For each \(x \in C\), there exists a subsequence \(\{T^{ni}x\}\) of \(\{T^nx\}\) which converges to some \(p\) in \(C\), by the compactness of \(C\). Then, by (4), we get

\[
d(Tp, \; T^{ni}x) \leq ad(p, \; T^{ni-1}x) + cd(p, \; T^{ni}x) + cd(Tp, \; T^{ni-1}x)
\]

\[
\leq ad(p, \; T^{ni}x) + cd(T^{ni}x, \; T^{ni-1}x) + cd(p, \; T^{ni}x) + cd(Tp, \; T^{ni}x) + cd(T^{ni}x, \; T^{ni-1}x),
\]

so that we obtain

\[
d(Tp, \; T^{ni}x) \leq \frac{a+c}{1-c} \{d(p, \; T^{ni}x) + d(T^{ni}x, \; T^{ni-1}x)\}
\]

\[
= d(p, \; T^{ni}x) + d(T^{ni}x, \; T^{ni-1}x).
\]

Therefore we have

\[
d(Tp, \; p) = \lim_{i \to \infty} d(Tp, \; T^{ni}x)
\]

\[
\leq \lim_{i \to \infty} \{d(p, \; T^{ni}x) + d(T^{ni}x, \; T^{ni-1}x)\}.
\]

Since the left hand side of the above inequality tends to 0 as \(i \to\)
by Lemma 2.1, we have $T\rho = \rho$.
Moreover, by (4), we have
$$d(T^{n+1}x, \rho) \leq ad(T^nx, \rho) + cd(T^nx, \rho) + cd(T^{n+1}x, \rho),$$
so that we obtain
$$d(T^{n+1}x, \rho) \leq \frac{a+c}{1-c}d(T^nx, \rho) = d(T^nx, \rho).$$
Therefore, the sequence \{d(T^n x, \rho)\} is nonincreasing, and the whole sequence \{T^nx\} converges to ρ.

Corollary. Let (C, d) be a compact metric space, and let $T : C \to C$ be a map satisfying (6). Then T has a fixed point, and any iteration \{T^n x\} converges to a fixed point of T, for each $x \in C$.

Remark 2.3. If (C, d) is not bounded, then Lemma 2.1 and 2.2. are not valid. For example, consider a map $T : R \to R$ such that $Tx = x + a$ ($a \neq 0$) with the usual metric on R. Then T satisfies (4) and (6), but $d(T^{n+1}x, T^nx) = |a|$ for all $x \in R$ and all $n \geq 1$.

Also note if C is a weakly compact convex subset of a Banach space and C has normal structure, and if T is a selfmap of C satisfying (4), then T has a fixed point by [4]. In section 2, we shall extend this result for the case that C has asymptotic normal structure. But the following example shows that the conditions on C are indispensable.

Example. Let $C[0, 1]$ be a Banach space of all continuous real valued functions on $[0, 1]$ with the uniform norm. Let $C = \{ f \in C[0, 1] ; 0 \leq f \leq 1, f(0) = 0, f(1) = 1 \}$. Then C is a closed convex bounded subset of $C[0, 1]$. Define a map $T : C \to C$ by $Tf(x) = xf(x)$. Then T is nonexpansive. Also we can prove that T satisfies (6), and so that T satisfies (4) for all $a, c \geq 0$ with $a + 2c = 1$. But T has no fixed point.

3. **Asymptotic Normal Structure and Fixed Points**

Recall that a closed convex bounded subset C of a Banach space has asymptotic normal structure (see [2]) if, for each closed convex subset C_0 of C consisting of more than one point and each sequence $\{x_n\}$ in C_0 satisfying $x_{n+1} - x_n \to 0$ as $n \to \infty$, there is a point $x \in C_0$ such that
$$\liminf_n \|x_n - x\| < \delta(C_0).$$
Note that if C has normal structure, then C has asymptotic normal structure. But the converse is not true.
Now, we state our main result in this section.

THEOREM 3.1. Let C be a nonempty weakly compact convex subset of a Banach space. Suppose that C has asymptotic normal structure. Let $T : C \to C$ be a map satisfying

$$
\| Tx - Ty \| \leq a \| x - y \| + b \left(\| x - Tx \| + \| y - Ty \| \right) + c \left(\| x - Ty \| + \| y - Tx \| \right)
$$

for all $x, y \in C$, with $a, c \geq 0$, $0 \leq b < \frac{1}{2}$ and $a + 2b + 2c = 1$. Then T has a fixed point.

Proof. If $b = c = 0$, then the theorem is true by Baillon and Schöneberg [2]. If $b > 0$, $c > 0$, then the theorem is valid by Bogin [4]. If $b > 0$, $c = 0$, then also the theorem remains true by Gregus [11]. Therefore we need only to prove the theorem for the case $b = 0$ and $c > 0$, so that we may assume that T satisfies (4).

By the standard Zorn's Lemma argument using weak compactness of C, there exists a nonempty weakly compact convex subset C_0 of C which is minimal in the sense that it contains no proper closed convex subset which is invariant under T.

Now we claim that C_0 is a singleton, whose element is a fixed point of T. Suppose that C_0 has more than one point.

Let x_0 be any fixed element in C_0, and let $x_n = T^n x_0$. Then by Lemma 2.1, $x_{n+1} - x_n \to 0$ as $n \to \infty$. Next we claim that, for each $x \in C_0$,

$$
\lim \| x_n - x \| = \delta(C_0).
$$

Therefore, we have a contradiction to the asymptotic normal structure of C. To prove (10), let $y \in C_0$, and let $s = \lim \sup \| x_n - y \|$. Let $D = \{ x \in C_0; \lim \sup \| x_n - x \| \leq s \}$, which is nonempty closed and convex. Then, by (4), we have

$$
\| Tx - x_n \| = \| Tx - Tx_{n-1} \|
\leq a \| x - x_{n-1} \| + c \| x - Tx_{n-1} \| + c \| x_{n-1} - Tx \|
\leq (a + c) \| x - x_n \| + c \| x_n - Tx \| + (a + c) \| x_n - x_{n-1} \|,
$$

so that we obtain

$$
\| Tx - x_n \| \leq \frac{a + c}{1 - c} \| x - x_n \| + \frac{a + c}{1 - c} \| x_n - x_{n-1} \|
= \| x - x_n \| + \| x_n - x_{n-1} \|,
$$
which shows that D is invariant under T. By the minimality of C_0, $D=C_0$. Choose a subsequence $\{x_{n_i}\}$ so that $\lim \|x_{n_i} - y\| = s'$ exists. Suppose that there exists z in C_0 and a subsequence $\{x_{n_j}\}$ of $\{x_{n_i}\}$ such that $\lim \|x_{n_j} - z\| = t$. Let $E = \{x \in C_0 : \limsup \|x_{n_j} - x\| \leq \min \{t, s'\}\}$. Repeating the above argument, we find $E = C_0$. Therefore $y, z \in C_0 = E$, and so $t = s'$. Thus, for each $x \in C_0$, $\lim \|x_{n_j} - x\|$ exists and equals s'.

We complete the proof by showing that $s' = r = \delta(C_0)$. From this it follows that $\|x_{n_i} - y\| \to r$ whenever $\|x_{n_i} - y\|$ converges. Therefore by the boundedness of $\{x_{n_i}\}$, $\|x_n - y\| \to r$ for the entire sequence.

For this purpose, consider $F = \{u \in C_0 : \sup \{|u - x| ; x \in C_0\} \leq s'\}$. Then F is nonempty because we can choose a weakly convergent subsequence, again denoted by $\{x_{n_i}\}$ with the limit z. Since $\|x_{n_i} - x\| \to s'$ for each $x \in C_0$, it follows that $\|x - z\| \leq s'$, so that $z \in F$. Now if $s' < r$, then F is a proper closed convex subset of C_0. However, this contradicts the minimality of C_0 because F is invariant under T. To see the latter, let w be in F, and let $\sup \{|Tw - x| ; x \in C_0\} = s_1$. We must prove that $s_1 \leq s'$. Suppose $s_1 > s'$. Choose ε with $0 < \varepsilon < (a + c) (s_1 - s') / 2$. Then there exists $u \in C_0$ such that $s_1 < |Tw - u| + \varepsilon$. By the minimality of C_0, we can see that the closed convex hull of TC_0 is actually C_0. Therefore we can choose $v = \sum \lambda_i Tv_i$ with $v_i \in C_0$, $\lambda_i > 0$, $\sum \lambda_i = 1$, and $\|u - v\| \leq \varepsilon$. Then we have

\[
s_1 \leq |Tw - u| + \varepsilon \\
\leq |Tw - v| + |v - u| + \varepsilon \\
\leq \sum \lambda_i |Tw - Tv_i| + 2\varepsilon \\
\leq \sum \lambda_i (a|w - v_i| + c|w - Tv_i| + c|v_i - Tw|) + 2\varepsilon \\
\leq \sum \lambda_i (as' + cs' + cs_i) + 2\varepsilon \\
= (a + c) s' + cs_1 + 2\varepsilon < s_1,
\]

which is a contradiction. Therefore, we have $s_1 \leq s'$. This completes the proof.

Remark 3.1. Theorem 3.1 is a generalization of [4] and [10] except for the case $b=1/2$. However, the conclusion of Theorem 3.1 does not hold for the case $b=1/2$ by [22].

In Theorem 3.1, instead of asymptotic normal structure of C, let
us consider close-to-normal structure (cf. [13]).

Theorem 3.2. Let \(C \) be a nonempty weakly compact convex subset of a Banach space. Suppose that \(C \) has close-to-normal structure, and that \(T : C \to C \) is a generalized nonexpansive map with \(b > 0 \) in (2). Then \(T \) has a unique fixed point.

Proof. From [4], [11] and [24], the proof is clear.

Next we consider a family of generalized nonexpansive maps and their common fixed points. For this end, we need the following lemma.

Lemma 3.1. ([19]). Let \(C \) be a closed convex subset of a strictly convex Banach space, and let \(T : C \to C \) be a generalized nonexpansive map with \(a > 0 \) in (2). Then the set \(F(T) \) of all fixed points of \(T \) is closed and convex.

Theorem 3.3. Let \(C \) be a nonempty weakly compact convex subset of a strictly convex Banach space. Suppose that \(C \) has asymptotic normal structure, and that \(\mathcal{I} \) is an arbitrary commuting family of selfmaps of \(C \) such that each member of \(\mathcal{I} \) satisfies (2) with \(a > 0 \). Then \(\mathcal{I} \) has a common fixed point, i.e., there is a point \(p \in C \) such that \(Tp = p \) for every \(T \in \mathcal{I} \).

Proof. By Theorem 3.1, each member \(T \) of \(\mathcal{I} \) has a nonempty fixed point set \(F(T) \). Moreover, by Lemma 3.1, each \(F(T) \) is a closed convex subset of \(C \), so that it is weakly compact. Let \(\mathcal{A} = \{ F(T); T \in \mathcal{I} \} \). Now we claim that \(\mathcal{A} \) satisfies the finite intersection condition, so that \(\bigcap \{ F(T); T \in \mathcal{I} \} \) is nonempty, and it is the set of common fixed points of \(\mathcal{I} \).

Suppose \(T_1, T_2, \ldots, T_n \in \mathcal{I} \). Since \(T_1T_2 = T_2T_1 \), \(F(T_1) \) is invariant under \(T_2 \). Therefore \(T_2 \) has a fixed point in \(F(T_1) \), so that \(F(T_1) \cap F(T_2) \) is nonempty, closed and convex. Since \(T_3 \) commutes \(T_1 \) and \(T_2 \), \(F(T_1) \cap F(T_2) \) is invariant under \(T_3 \), so that \(T_3 \) has a fixed point in \(F(T_1) \cap F(T_2) \). Therefore \(F(T_1) \cap F(T_2) \cap F(T_3) \) is nonempty, closed and convex. By the same argument and by induction, we have \(\bigcap_{i=1}^{n} F(T_i) \neq \emptyset \), which shows that \(\mathcal{A} \) satisfies the finite intersection condition.

By the same line as in the proof of Theorem 3.3, we have the following
THEOREM 3.4. Let C be a nonempty weakly compact convex subset of a Banach space. Suppose that C has close-to-normal structure, and that \mathcal{F} is a commuting family of selfmaps of C such that each member of \mathcal{F} satisfies (2) with $b > 0$. Then \mathcal{F} has a unique common fixed point. In particular, if one of members in \mathcal{F} satisfies (2) with $b > 0$, then \mathcal{F} has a unique common fixed point.

REMARK 3.2. For a family \mathcal{F} of nonexpansive maps, a number of authors ([3], [8], [17], [18] and [21]) investigated common fixed points of \mathcal{F}. Note that every nonexpansive map is continuous, but a generalized nonexpansive map need not be continuous in general. Therefore, in a strictly convex Banach space, Theorem 3.3 is a generalization of [3], [17], [18] and [21].

Finally we shall prove two fixed point theorems which are concerned with variations of (2). At first, we have the following

THEOREM 3.5. Let C be a nonempty weakly compact convex subset of a Banach space, and let T be a selfmap of C satisfying

$$
\|Tx - Ty\| \leq \max \left\{ \|x - y\|, \frac{1}{2}\|x - Ty\| + \frac{1}{2}\|y - Tx\| \right\},
$$

for all $x, y \in C$. If C has normal structure, then T has a fixed point.

Proof. By Zorn’s lemma, we have a nonempty minimal closed convex subset C_0 of C in the sense that it contains no proper closed convex subset which is invariant under T. Suppose that C_0 has more than one point. For an arbitrary $x_0 \in C_0$, put $x_n = T^n x_0$. Then, by Bogin [4], there exists $r > 0$ such that $C_1 = \{x \in C_0; \lim \sup \|x_n - x\| \leq r\}$ is a nonempty proper closed convex subset of C_0. Let $x \in C_1$ and $\lim \sup \|x_n - Tx\| = r_0$. Since

$$
\|x_n - Tx\| = \|Tx_{n-1} - Tx\|
$$

$$
\leq \max \left\{ \|x_{n-1} - x\|, \frac{1}{2}\|Tx_{n-1} - x\| + \frac{1}{2}\|x_{n-1} - Tx\| \right\},
$$

we have

$$
r_0 = \lim \sup \|Tx - x_n\|
$$

$$
\leq \lim \sup \left\{ \max \left\{ \|x_{n-1} - x\|, \frac{1}{2}\|x_n - x\| + \frac{1}{2}\|x_{n-1} - Tx\| \right\} \right\}
$$

$$
\leq \max \left\{ r, \frac{1}{2}r + \frac{1}{2}r_0 \right\}.
$$
Therefore, we have \(r_0 \leq r \), and so that \(Tx \in C_1 \), which shows that \(C_1 \) is invariant under \(T \). This is a contradiction. Therefore \(C_0 \) is a singleton.

Let \((C, d) \) be a complete metric space. We define the Kuratowski measure of noncompactness \(\alpha \) as a nonnegative real valued function on the set of all bounded subsets of \(C \) such that \(\alpha (D) = \inf \{ r > 0; D \text{ is covered by finitely many sets with diameter less than } r \} \). It is well-known that \(\alpha (D) = 0 \) if and only if the closure \(\bar{D} \) of \(D \) is compact.

A map \(T : C \to C \) is said to be condensing if, for each bounded subset \(D \) of \(C \), \(TD \) is bounded and

\[
\alpha (TD) < \alpha (D) \quad \text{for all } \alpha (D) \neq 0.
\]

Note that we do not assume that \(T \) is continuous.

Theorem 3.6. Let \((C, d) \) be a bounded complete metric space, and let \(T : C \to C \) be a generalized nonexpansive and condensing (not necessarily continuous) map with \(c > 0 \) in (2). Then \(T \) has a fixed point, and any iteration \(\{ T^nx \} \) converges to a fixed point of \(T \) for each \(x \in C \).

Proof. By Lemma 2.1 and [4], \(T \) is asymptotically regular. Let \(x_0 \) be an arbitrary point in \(C \), and let \(x_n = T^nx_0 \). Then we claim that \(\alpha (\{ x_n \}_{n=0}^{\infty}) = 0 \). Suppose \(\alpha (\{ x_n \}_{n=0}^{\infty}) > 0 \). Since \(T \) is condensing, we have

\[
\alpha (\{ x_n \}_{n=0}^{\infty}) = \alpha (T \{ x_n \}_{n=1}^{\infty}) < \alpha (\{ x_n \}_{n=0}^{\infty}).
\]

But \(\alpha (\{ x_n \}_{n=0}^{\infty}) = \max \{ \alpha (\{ x_0 \}), \alpha (\{ x_n \}_{n=1}^{\infty}) \} \) gives that the above inequality is a contradiction. Therefore, \(\{ x_n \} \) is relatively compact, so that we can choose a convergent subsequence \(\{ x_{n_i} \} \) with the limit \(p \). Then, by (2), we have

\[
d(Tp, x_{n_i}) \leq ad(p, x_{n_i-1}) + b \{ d(p, Tp) + d(x_{n_i-1}, x_{n_i}) \}
+ c \{ d(p, x_{n_i}) + d(x_{n_i-1}, Tp) \},
\]

so that we obtain

\[
d(Tp, x_{n_i}) \leq \frac{a+c}{1-c} d(p, x_{n_i}) + \frac{a+b+c}{1-c} d(x_{n_i-1}, x_{n_i}) + bd(p, Tp).
\]

By letting \(i \to \infty \), we have \(d(Tp, p) \leq bd(p, Tp) \), so that \(Tp = p \). By the same way in the proof of Theorem 2.3 we can prove that \(\{ T^nx_0 \} \) converges to \(p \).

Acknowledgement. This research is a portion of the author's doctoral dissertation at Seoul National University. The author is
greatly indebted to Professor Sehie Park for his valuable guidances.

References
9. D. V. Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. 25 (1982), 139-144.

Chungnam National University
Daejeon, 300-31, Korea