CERTAIN SUBGROUPS OF HOMOTOPIY GROUPS

Moo Ha Woo and Jae-Ryong Kim

D.H. Gottlieb ([1], [2]) has defined and studied the evaluation subgroup \(G_n(X) \) of the homotopy group \(\pi_n(X) \). On the other hand, many authors have studied the homotopy groups of function spaces. In particular, S.S. Koh ([6]) proved some theorems concerning function spaces. In this paper we will define a subgroup of \(\pi_n(X) \) which contains \(G_n(X) \). Using the properties of the group defined here, we will generalize the results of S.S. Koh.

1. Introduction

The paper is divided into 5 sections. In section 2 we define a subgroup \(G_n(X, A, *) \) of \(\pi_n(X, *) \). The relationship between this group and the evaluation map from function space \(X^A \) to \(X \) is examined and it is shown that \(G_n(X, A, *) \) contains \(G_n(X, *) \). Moreover we give an example for which \(G_n(X, *) \subset G_n(X, A, *) \subset \pi_n(X, *) \).

In section 3, we will prove that \(G_n(X, A, *) \) is an invariant of homotopy type in the category of spaces homotopically equivalent to \(CW \)-pairs.

In section 4, we study some conditions concerning the cell in \(CW \)-pair, and some other conditions.

In section 5, we investigate the relationship between \(G \)-spaces and \(W \)-spaces. In final section 6, we devote ourself to study function spaces and their homotopy groups.

2. Group \(G_n(X, A, *) \)

Let \((X, *) \) and \((A, *) \) be any two pointed topological spaces and \(f : (A, *) \rightarrow (X, *) \) be a fixed map. Consider the class of continuous functions \(F : A \times S^1 \rightarrow X \)

such that \(F(a, *) = f(a) \).
Then the map \(h : (S^n, *) \rightarrow (X, *) \) defined by \(h(s) = F(*, s) \) represents an element \([h] \in \pi_n(X, *)\).

DEFINITION 2.1. The set of all elements \([h] \in \pi_n(X, *)\) obtained in the above manner from some \(F \) will be denoted by \(G_n^f(X, A, *) \).

Thus for every \([h] \in G_n^f(X, A, *)\), there is at least one map \(F : A \times S^n \rightarrow X \) which satisfies the above conditions. We say that \(F \) is an affiliated map to \([h]\) with respect to \(A \). Note that \([h]\) may have many affiliated maps to \([h]\) with respect to \(A \) which are not homotopic. We will abbreviate an affiliated map to \([h]\) with respect to \(A \) to an affiliated map to \([h]\) if no confusion arise. It is easy to see that \(G_n^f(X, A, *) \) form a subgroup of \(\pi_n(X, *) \).

Let \(A \) be locally compact and regular, and \(X^A \) be the space of mappings from \(A \) to \(X \) with compact-open-topology. The map \(p : X^A \rightarrow X \) given by \(p(g) = g(*) \) is continuous. We call \(p \) an evaluation map. Thus \(p \) induces homomorphisms

\[
p_\ast : \pi_n(X^A, f) \rightarrow \pi_n(X, *)
\]

for all \(n \). Then we have

THEOREM 2.1. \(p_\ast(\pi_n(X^A, f)) = G_n^f(X, A, *) \).

Proof. Since \(A \) is locally compact, any continuous map

\[
H : (S^n, *) \rightarrow (X^A, f)
\]

gives rise to a continuous associated map

\[
\phi(H) : A \times S^n \rightarrow X.
\]

Since \(\phi(H)(*, s) = (H(s))(*) = (pH)(s) \) and \(\phi(H)(a, *) = (H(*(a))) (a) = f(a) \), we have \([pH] = p_\ast[H] \in G_n^f(X, A, *)\).

Conversely, if \(F \) is an affiliated map to \([F(*, *)]\), define \(H \) by \(H = pF^{-1}(F) \). Then \([H] \in p_\ast(\pi_n(X^A, f)) \) and \(H(s) = F(*, s) \). This completes the theorem.

REMARK. Note that \(G_n(X, *, *) = \pi_n(X, *) \) and \(G_n^1(X, X, *) = G_n(X, *) \), where \(G_n(X, *) \) is the evaluation subgroup defined by Gottlieb [2].

D.H. Gottlieb proved the following result for \(CW \)-complexes \(A \) and \(X \) [2].

THEOREM 2.2. For any topological spaces \(A, X \) and any \(f : (A, *) \rightarrow (X, *) \), we have \(G_n(X, *) \leq G_n^f(X, A, *) \).
THEOREM 2.3. If A is a subspace of X and $i : (A, *) \longrightarrow (X, *)$ is inclusion, then $G^n_i(X, A, *) \subseteq G^n_f(X, A, *)$ for any map $f : (A, *) \longrightarrow (X, *)$ such that $f(A) \subseteq A$.

Proof. If $[h] \in G^n_i(X, A, *)$, there is an affiliated map

$F : A \times S^1 \longrightarrow X$

to $[h]$. Define a map $H : A \times S^1 \longrightarrow X$ by $H(a, s) = F(f(a), s)$.

DEFINITION 2.2. $G^n_i(X, A, *)$ will be denoted by $G^n(X, A, *)$.

DEFINITION 2.3. A space X is an H-space iff there a point $* \in X$ and a continuous map $u : X \times X \longrightarrow X$ such that $u(x, *) = u(*, x) = x$ for all $x \in X$. We will write $u(x, y)$ by $x \cdot y$.

THEOREM 2.4. Suppose that X is an H-space, then

$G_n(X, *) = G_n(X, A, *) = \pi_n(X, *)$.

Proof. By Gottlieb ([1], [2]).

The fact that $G_n(X, *) \leq G_n(X, A, *) \leq \pi_n(X, *)$ leads naturally to the questions: Is there topological pair (X, A) for which $G_n(X, *) < G_n(X, A, *) < \pi_n(X, *)$? For this we give an example.

EXAMPLE. Let $X = \{ z \in C \mid |z| = 1, |z - 2| = 1 \}$, $A = S^1 = \{ z \in C \mid |z| = 1 \}$. Take $*$ by the point $(1, 0)$. Define $F : A \times S^1 \longrightarrow X$ by $F(z, w) = \pi w$. Then F is well defined and continuous. Moreover $[F(*, *])$ is one of the generators of the free group $\pi_1(X, *)$ on two generators and $F(*, *)$ is inclusion $i : (A, *) \longrightarrow (X, *)$. Thus we have $G_1(X, A, *) \cong \mathbb{Z}$. On the other hand, $G_1(X, *) = \{ 0 \}$ (cf. Gottlieb [1]).

3. Some fundamental theorems

In this section we wish to study the category \mathcal{V}^2 whose objects are the pairs (X, A) of spaces and morphisms are maps of pairs.

Let $\sigma : I \longrightarrow X$ be a path such that $\sigma(0) = x_0$ and $\sigma(1) = x_1$. Then σ induces an isomorphism $\sigma_* : G_n(X, x_1) \cong G_n(X, x_0)$. Similarly we will show that, in the usual sense, $G_n(X, A, *)$, viewed as a subgroup of $\pi_n(X, *)$, is independent of the base point.

THEOREM 3.1. Let (X, A) be a topological pair and $\sigma : I \longrightarrow A \subseteq X$ be a path such that $\sigma(0) = x_0$, $\sigma(1) = x_1$. Then σ induces an isomorphism $\sigma_* : G_n(X, A, x_1) \cong G_n(X, A, x_0)$.

Proof. If \(\alpha \in G_n(X, A, x_1) \), there exists an affiliated map

\[F : A \times S^n \to X. \]

to \(\alpha \) such that \([F(x_1, \cdot)] = \alpha, F(\cdot, *) = i : A \to X\). Now define \(h : S^n \times I \to X \) by

\[h(t, s) = F(\sigma(1-s), t). \]

It is clear that \([h(\cdot, 0)] = \alpha \) and \(h(\cdot, 1) \) represents \(\sigma_*(\alpha) \in \pi_n(X, x_0) \). Moreover \(F \) is an affiliated map to \([h(\cdot, 1)]\). Thus we have \(\sigma_*(G_n(X, A, x_1)) \subseteq G_n(X, X, x_0) \).

On the other hand, the reverse path \(\sigma^{-1} : I \to A \subseteq X \) induces the inverse isomorphism, \((\sigma^{-1})_* : \pi_n(X, x_0) \to \pi_n(X, x_1) \), to \(\sigma_* \). Hence we complete the theorem.

It is not true that \(f : (X, A) \to (Y, B) \) induces a homomorphism from \(G_n(X, A, *) \) to \(G_n(Y, B, f(*)) \) \cite{1}. But, for some maps, it is true that \(f_* \) maps \(G_n(X, A, *) \) to \(G_n(Y, B, f(*)) \). Suppose \(r : (Y, B) \to (X, A) \) be map. We say that \(r \) has a right homotopy inverse if there is a map \(j : (X, A) \to (Y, B) \) such that \(lj \) is homotopic to \(1_{(X, A)} \) (with homotopy of pair). Similarly we can define a left homotopy inverse.

Theorem 3.2. Let \((X, A)\) and \((Y, B)\) be in \(\mathcal{D}_2 \). Suppose \((X, A)\) is a CW-pair and \(B \) is path-connected. If \(r : (Y, B) \to (X, A) \) has a right homotopy inverse, then \(r_* : \pi_n(Y, *) \to \pi_n(X, r(*)) \) carries \(G_n(Y, B, *) \) into \(G_n(X, A, r(*)) \).

Proof. First we need a lemma.

Lemma. Under the same assumption of Theorem 3.2, there is a right homotopy inverse

\[j' : (X, A) \to (Y, B) \]

such that \(j'(r(*)) = * \).

Proof of Lemma. Let \(j : (X, A) \to (Y, B) \) be a right homotopy inverse of \(r \) and \(\alpha : I \to B \subseteq Y \) be a path such that \(\alpha(0) = jr(*) \), \(\alpha(1) = * \). By the homotopy extension property, in the diagram

\[
\begin{array}{ccc}
 r(* \times I \cup A \times 0) & \to & B \subseteq Y \\
 \downarrow & & \\
 A \times I & \to & \\
 \alpha \cup j | A
\end{array}
\]

we have an extension \(K : A \times I \to B \subseteq Y \).

Again in the diagram...
Certain subgroups of homotopy groups

\[A \times I \cup X \times 0 \xrightarrow{K \cup j} Y \]
\[\xrightarrow{X \times I} \]

we have an extension \(K' : X \times I \longrightarrow Y \). Let \(j' = K'(,1) \), then \(j' = K'(,0) = j \) and \(rj' \sim rj \sim 1_{(X,A)} \) (homotopy of pair). Moreover \(j'(r(*)) = K'(r(*),1) = \alpha(1) = * \).

Now we continue the proof of Theorem 3.2.

If \(\alpha \in G_n(Y,B,*), \) there is an affiliated map

\[F : B \times S^n \longrightarrow Y \]

to \(\alpha \). Define \(F' : A \times S^n \longrightarrow X \) by

\[F'(a,s) = \tau (F(j'(a),s)). \]

Then \(F'(,*) = rj' \). Since \(rj' \) is homotopic to \(1_{(X,A)} \), we can find a homotopy \(H : (X \times I, A \times I) \longrightarrow (X, A) \) such that

\[H|_{A \times 0} = F'|_{A \times *, H|_{A \times 1} = 1_A}. \]

Define a map \(G : (A \times * \times I) \cup (A \times S^n \times 0) \longrightarrow X \) by

\[G(a,*t) = H(a,t), \ G(a,s,0) = F'(a,s). \]

Then \(G \) is well defined and continuous. By the homotopy extension property, we have a homotopy

\[(A \times * \times I) \cup (A \times S^n \times 0) \longrightarrow X \]
\[\xrightarrow{G} \]
\[A \times S^n \times I \]

\(H' : A \times S^n \times I \longrightarrow X \) connecting \(H'(,0) = F' \) to \(H'(,1) \).

Note that \(F'|_{r(*) \times S^n} : S^n \longrightarrow X \) represents \(r_*(a) \). Now let \(\alpha : I \longrightarrow X \) be given by

\[\sigma(t) = H'(r(*),*,t) \subseteq A. \]

Thus by Theorem 3.1, \(\sigma \) induces an isomorphism

\[\sigma_* : G_n(X,A,r(*)) \cong G_n(X,A,r(*)). \]

Let \(h : S^n \longrightarrow X \) be given by \(h = H'(r(*),1) \). Then \(\sigma_*[h] = r_*(a) \).

Moreover \([h] \in G_n(X,A,r(*)) \). Consequently \(r_*(a) = \sigma[h] \in G_n(X,A,r(*)) \).
COROLLARY 3.3. If \(r : (Y, B) \to (X, A) \) is a retract, \((X, A)\) is a CW-pair and \(B \) is path-connected, then \(r_* : \pi_n(Y, *) \to \pi_n(X, r(*)) \) carries \(G_n(Y, B, *) \) into \(G_n(X, A, r(*)) \).

THEOREM 3.4. Let \((X, A)\) and \((Y, B)\) be in \(\mathbb{H}^2 \). Let \((X, A)\) be a CW-pair and \(B \) be path-connected. If \(j : (Y, B) \to (X, A) \) has a lift homotopy inverse, then \(j_* (\alpha) \in G_n(X, A, x_0) \) implies \(\alpha \in G_n(Y, B, y_0) \) where \(j(y_0) = x_0 \).

Proof. Since \(j : (Y, B) \to (X, A) \) has a left homotopy inverse and \((X, A)\) is a CW-pair, we can find \(r : (X, A) \to (Y, B) \) such that \(r(x_0) = y_0 \) and \(rj \sim 1_{(Y, B)} \) (homotopy of pair) by the homotopy extension property. Let \(h_t : Y \to Y \) be the homotopy from \(rj \) to \(1_{(Y, B)} \). Let \(\sigma : I \to Y \) be a closed path given by \(\sigma(t) = h_t(y_0) \). Then \(r_*j_* = \sigma_* : \pi_n(Y, y_0) \to \pi_n(Y, y_0) \).

If \(j_* (\alpha) \in G_n(X, A, x_0) \), then \(r_*j_* (\alpha) \in G_n(Y, B, r(x_0)) \) by Theorem 3.2. Hence \(\alpha = \sigma_*^{-1}r_*j_* (\alpha) \in G_n(Y, B, y_0) \) by Theorem 3.1.

Now we can prove that \(G_n(X, A) \) is a homotopy type invariant by using Theorems 3.2 and 3.4.

THEOREM 3.5. Suppose that \((X, A)\) and \((Y, B)\) are both the same homotopy type of a path-connected CW-pair. If \(f : (X, A) \to (Y, B) \) is a homotopy equivalence, then \(f_* \) carries \(G_n(X, A, *) \) isomorphically onto \(G_n(Y, B, f(*)) \).

Proof. First we assume that \((Y, B)\) is a CW-pair. By Theorem 3.2, we have \(f_*^{-1} (G_n(Y, B, f(*)) \subseteq G_n(X, A, *)) \). Similarly by Theorem 3.4, \(f_* (G_n(X, A, *)) \subseteq G_n(Y, B, f(*)) \). Thus \(G_n(Y, B) = f_* f_*^{-1} (G_n(Y, B)) \subseteq f_* (G_n(X, A)) \). Hence \(f_* (G_n(X, A)) = G_n(Y, B) \). Since \(f_* \) is an isomorphism, the theorem is true for the special case that \((Y, B)\) is a CW-pair.

Now in general, \((Y, B)\) is homotopy equivalent to a CW-pair \((Z, C)\). Let \(g : (Y, B) \to (Z, C) \) be a homotopy equivalence. Then \(gf \) is a homotopy equivalence. Thus \(g_*f_* \) carries \(G_n(X, A) \) isomorphically onto \(G_n(Z, C) \) and \(g_* \) carries \(G_n(Y, B) \) isomorphically onto \(G_n(Z, C) \). Hence \(f_* \) must carry \(G_n(X, A) \) isomorphically onto \(G_n(Y, B) \).

THEOREM 3.6. If \((X, A)\) and \((Y, B)\) are homotopy type of path-connected CW-pairs, then \(G_n(X \times Y, A \times B, (x_0, y_0)) \equiv G_n(X, A, x_0) \oplus G_n(Y, B, y_0) \).
Certain subgroups of homotopy groups

Proof. Since there exists an isomorphism \(h : \pi_n(\times Y, (x_0, y_0)) \to \pi_n(X, x_0) \oplus \pi_n(Y, y_0) \) such that \(h([\alpha]) = p_*([\alpha]) \oplus q_*([\alpha]) \), where \(p_* \) and \(q_* \) are induced homomorphisms from the projection \(X \times Y \) onto \(X \) and \(Y \) respectively. Now \(h(G_n(X \times Y, A \times B, (x_0, y_0)) \subseteq G_n(X, A, x_0) \oplus G_n(Y, B, y_0) \) as may readily be seen by noting that \(p \) and \(q \) are retractions and applying Corollary 3.3.

On the other hand, let \([\alpha] \) and \([\beta] \) be elements of \(G_n(X, A, x_0) \) and \(G_n(Y, B, y_0) \) respectively. Now \(h^{-1}([\alpha] \oplus [\beta]) = ([j\alpha] \cdot (k\beta)) \) where \(j \) and \(k \) inject \(X \to X \times y_0 \) and \(Y \to x_0 \times Y \) respectively. Let \(H : A \times S^n \to X \) be an affiliated map to \([\alpha] \). Define \(K : A \times B \times S^n \to X \times Y \) such that \(K(x, y, s) = (H(x, s), y) \). The existence of \(K \) show that \([j\alpha] \in G_n(X \times Y, A \times B, (x_0, y_0)) \). Similarly \([k\beta] \in G_n(X \times Y, A \times B, (x_0, y_0)) \). Thus the product \([j\alpha] \cdot [k\beta] = ([j\alpha] \cdot (k\beta)) \in G_n(X \times Y, A \times B, (x_0, y_0)). \) This completes the Theorem.

4. Relations between \(G_n(X, A, *) \) and \(G_n(X, *) \)

Theorem 4.1. Suppose \(S \) is a set of integers, and \((X, A) \) is a CW-pair such that if \(e \in X - A \) is a cell, \(\dim e \in S \). Suppose that if \(m \in S, \pi_{n+m-1}(X, *) = \{0\} \). Then \(G_n(X, A, *) = G_n(X, *) \).

Proof. Since \(G_n(X, *) \subseteq G_n(X, A, *) \) we need only to prove that \(G_n(X, A, *) \subseteq G_n(X, *) \). If \([f] \in G_n(X, A, *) \), there is an affiliated map \(H : A \times S^n \to X \) to \([f] \). Let \(L = (A \times S^n) \cup (X \times *) \) and define a map \(K : L \to X \) by

\[
K(a, s) = H(a, s) \\
K(x, *) = x.
\]

Since \((X \times S^n, L) \) is a CW-pair, there exists an extension \(K' \):

\[
\begin{array}{ccc}
L & \xrightarrow{K} & X \\
\downarrow & & \searrow \\
X \times S^n & \xrightarrow{K'} & X
\end{array}
\]

such that \(K' \big|_L = K \). Thus \(K' \) is the required affiliated map to \([f] \) with respect to \(X \). Thus we have \([f] \in G_n(X, *) \).

Theorem 4.2. Suppose \(S \) is a set of integers and \((X, A) \) is a CW-pair such that if \(e \in A - * \) is a cell, \(\dim e \in S \). If \(m \in S, \pi_{n+m-1}(X, *) = \{0\} \). Then \(G_n f X, A, *) = \pi_n(X, *) \) for any \(f : A \to X \).
Proof. Let \([f] \in \pi_n(X, \ast)\). Define a map \(H : (A \times \ast) \cup (\ast \times S^n) \longrightarrow X\) by \(H(a, \ast) = a, H(\ast, s) = f(s)\). By Corollary 16.3 ([3] p131), there is an extension

\[K : A \times S^n \longrightarrow X\]

such that \(K|_{(A \times \ast) \cup (\ast \times S^n)} = H\). Thus \(K\) is an affiliated map to \([f]\), so that \([f] \in G_n(X, A, \ast)\).

In particular, if we take \(A = X\) in Theorem 4.2, we have

Corollary 4.3. Let \(X\) be a CW-complex and \(S = \{\dim e | e \in X - \ast\}\). Suppose that if \(m \in S\), then \(\pi_{n+m-1}(X, \ast) = \{0\}\). Then \(\pi_n(X, \ast) = G_n(X, \ast) = G_n'(X, A, \ast)\) for any \(A \subseteq X\) and for any \(f : A \longrightarrow X\).

In general, \(i_\ast(\pi_n(A, \ast)) \subseteq G_n(X, A, \ast)\) for \(i : A \longrightarrow X\). But under the same assumption of Theorem 4.2, we have \(i_\ast(\pi_n(A, \ast)) \subseteq G_n(X, A, \ast)\).

Theorem 4.4. If \(A\) is a retract of \(X\), then

\[G_n(X, A, \ast) \cap i_\ast(\pi_n(A, \ast)) = i_\ast(G_n(A, \ast))\]

Proof. \(G_n(X, A, \ast) \cap i_\ast(\pi_n(A, \ast)) \supseteq i_\ast(G_n(A, \ast))\) is obvious. Conversely, if \([f] \in G_n(X, A, \ast) \cap i_\ast(\pi_n(A, \ast))\), there is a map \(g : (S^n, \ast) \longrightarrow (A, \ast)\) such that \(i_\ast[g] = [ig] = [f]\). And there is an affiliated map \(F : A \times S^n \longrightarrow X\) to \([f]\). Define \(F' : A \times S^n \longrightarrow A\) by \(F' = rF\), where \(r : X \longrightarrow A\) is a retraction. Then \([F'(*, \ast)] = [rF] = r_*[f] = [ig] = [f]\). And \(F'(\ast, \ast) = r\ast = \ast\ast\). This implies \([f] = i_\ast[g] \subseteq i_\ast(G_n(A, \ast))\).

Corollary 4.5. If \(A\) is a retract of \(X\), we have

\[G_1(X, A, \ast) \cap i_\ast(\pi_1(A, \ast)) \subseteq i_\ast(Z(\pi_1(A, \ast))\]

where \(Z(A)\) denotes the center of the group \(A\).

Proof. Gottlieb [1].

Corollary 4.6. Let \(A\) be a compact polyhedron such that Euler–Poincare number \(x(A) \neq 0\) and be a retract of \(X\). Then we have

\[G_1(X, A, \ast) \cap i_\ast(\pi_1(A, \ast)) = \{0\}\]

Proof. Gottlieb [1].

Theorem 4.7. Let \(X\) be a CW-complex and \(\{X_a\}\) be the set of all finite subcomplexes. Then \(G_n(X, x) = \lim G_n(X, X_a, \ast)\).
Proof. Since \(\{X_a\} \) directed by induction \((X_a \leq X_\beta \iff X_a \subseteq X_\beta) \), we can construct an inverse system
\[
\{G_n(X, X_a, \ast), (i_{X_aX_\beta})_\ast, \{X_a\}\}
\]
where \((i_{X_aX_\beta})_\ast : G_n(X, X_\beta, \ast) \subseteq G_n(X, X_a, \ast) \) is an inclusion homomorphism. By the definition of inverse limit of the inverse system, we obtain the required result.

5. \(G \)-spaces and \(W \)-spaces

Define a subgroup \(P_n(X, A, \ast) \) of \(\pi_n(X, \ast) \) as follows:

Definition 5.1. \([f] \in P_n(X, A, \ast) \) iff for every \([g] \in \pi_m(A, \ast) \) and every \(m \), there exists a map \(G : S^m \times S^n \longrightarrow X \) such that \(G(_, \ast) = f, G(\ast, \ast) = \ast \) and \(\ast \ast
\((X, \ast)\) is continuous, \([f] \in \pi_n(X, \ast)\). Thus there is a map \(F : S^m \times S^n \longrightarrow X\) such that \(F(\ast, \ast) = g\) and \(F(\ast, \ast) = f\). The existence of \(F\) implies \(\alpha \in G_n^f(X, S^m, \ast)\).

Corollary 5.6. \(P_n(X, \ast) = \bigcap_{f \in G_n^f(X, S^m, \ast)} \pi_n\)

Corollary 5.7. \([7]. P_n(S^a, \ast) = G_n^s(S^a, \ast)\) \[
\begin{cases}
0 & \text{for } n \text{ even} \\
Z & n = 1, 3 \text{ or } 7 \\
2Z & n = \text{odd}, \ n \neq 1, 3 \text{ or } 7.
\end{cases}
\]

6. Function space \(X^A\)

Now suppose that \(A\) is a locally compact and ANR space, then the evaluation map \(p : X^A \longrightarrow X\) is a fibering ([5]).

Let \(F\) be the fibre \(p^{-1}(\ast)\), then we have a long exact sequence \[
\cdots \longrightarrow \pi_n(F, f) \longrightarrow \pi_n(X^A, f) \longrightarrow \pi_n(X, \ast) \longrightarrow \pi_{n-1}(F, f) \longrightarrow \cdots
\]

where \(f : (A, \ast) \longrightarrow (X, \ast)\).

By Theorem 2.1, we have the following theorem.

Theorem 6.1. The next three statements are equivalent:

(i) \(p_*\) is epimorphism

(ii) \(G_n^f(X, A, \ast) = \pi_n(X, \ast)\)

(iii) For any \(g : (S^n, \ast) \longrightarrow (X, \ast)\), there is a lift \(\tilde{g} : (S^n, \ast) \longrightarrow (X^A, f)\) such that \([p \tilde{g}] = [g]\).

Combining theorem 6.1 and proposition 6.2([5] p. 152) we have

Corollary 6.2. If the fibering \(p : X^A \longrightarrow X\) admits a cross section \(\alpha : X \longrightarrow X^A\), then

\(G_n^f(X, A, \ast) = \pi_n(X, \ast)\) \((n \geq 1)\).

Theorem 6.3. If \(X\) is an H-space with \(\ast\) as unit, then we have \(\pi_n(X^A, f) \cong \pi_n(F, f) \oplus \pi_n(X, \ast)\) \((n \geq 1)\).

Proof. Define a map \(\alpha : X \longrightarrow X^A\) by

\[(\alpha(x))(a) = x \cdot f(a)\]

Then \(\alpha\) is well defined because \(\alpha(x) : A \longrightarrow X\) is continuous. Moreover \(p\alpha = 1_X\).
Now we will show that \(\alpha \) is continuous. Since \(A \) is locally compact,
\(\alpha : X \to X^A \) is continuous if and only if \(\alpha : X \times A \to X \) is continuous.
But the continuity of \(\alpha \) is clear.

Moreover \(\alpha(*)=f \). This \(\alpha \) is a cross-section. Thus we have the results
for \(n \geq 2 \) by proposition 6.2([5]p.152).

In case \(n=1 \), we have the short exact sequence, since \(X \) is an \(H \)-space,

\[
0 \to \pi_1(F,f) \to \pi_1(X^A,f) \to \pi_1(X,\ast) \to 0.
\]

Since \(\alpha : X \to X^A \) is a cross-section, it induces a homomorphism \(\alpha_* : \pi_1(X,\ast) \to \pi_1(X^A,f) \) and \(p_*\alpha_*=\alpha_*(p\alpha)=1 \). Thus need only to prove
\(\pi_1(X^A,f) \) is abelian. But the two multiplications in \([(S^A,\ast),(X,\ast)] \)
are the same and they are commutative ([3] p. 65). So that \([S,X^A] \cong \pi_1(X^A) \) is abelian. This completes the theorem.

Corollary 6.4. Let \(X \) be an \(H \)-space. Then

\[
\pi_n(X^S,\ast)=\pi_n(X,\ast) \oplus \pi_{n+q}(X,\ast) \quad n \geq 1
\]

Proof. By Whitehead theorem, we have \(\pi_n(F,f) \cong \pi_{n+q}(X,\ast) \).

Corollary 6.5.

\[
\begin{align*}
\pi_1(S^1\times S^1, S^0) & \cong Z \oplus Z \oplus Z \\
\pi_1(S^1\times S^1, S^0) & \cong Z \oplus Z \quad (q>0) \\
\pi_n(S^1\times S^1, S^0) & \cong \{0\} \quad (n>1, \quad q \geq 0).
\end{align*}
\]

Corollary 6.6. Let \(\pi \) be abelian and \(K(\pi,n) \) be an Eilenberg–Maclane space. Then

\[
\pi_m(K(\pi,n), S^0) \cong \begin{cases}
\pi \oplus \pi & \text{if } m=n \\
\{0\} & \text{if } m \neq n
\end{cases} \quad (q=0)
\]

\[
\begin{cases}
\pi & \text{if } m=n \\
\pi \oplus \pi & \text{if } m+q=n \quad (q>0) \\
\{0\} & \text{otherwise}
\end{cases}
\]

Proof. Since \(\pi \) is abelian, \(K(\pi,n) \) is an \(H \)-space.

Remark. (1) S.S. Koh [6] proved that if \(X \) is an \(H \)-space then
\(\pi_p(X,S^q) / \pi_{p+q}(X) \cong \pi_p(X) \). We generalized this.

(2) We can calculate the homotopy groups for \(S^1 \times S^1 \times \cdots \times S^1, \quad S^3 \times S^3 \times \cdots \times S^3 \) and so on.
References

Korea University

and

Kook Min University

Seoul 132, Korea