ON (ɛ)-LORENTZIAN PARA-SASAKIAN MANIFOLDS

RAJENDRA PRAasad AND VIBHA SRIVASTAVA

ABSTRACT. In this paper we study (ɛ)-Lorentzian para-Sasakian manifolds and show its existence by an example. Some basic results regarding such manifolds have been deduced. Finally, we study conformally flat and Weyl-semisymmetric (ɛ)-Lorentzian para-Sasakian manifolds.

1. Introduction

In [1] Bejancu and K. L. Duggal introduced (ɛ)-Sasakian manifolds. Also XuFeng and Xiaoli [11] showed that every (ɛ)-Sasakian manifold must be a real hypersurface of some indefinite Kähler manifold. Further, in [6] R. Kumar, R. Rani and R. Nagaich study (ɛ)-Sasakian manifolds. Since Sasakian manifolds with indefinite metric play significant role in Physics [5], our natural trend is to study various contact manifolds with indefinite metric. Recently, in 2009, U. C. De, Avijit Sarkar [4] study (ɛ)-Kenmotsu manifolds. In 1989, K. Matsumoto [7] introduced the notion of Lorenzian para-Sasakian manifolds. I. Mihai and R. Rosca [9] defined the same notion independently and several authors [8, 10] studied LP-Sasakian manifolds. In this paper we like to introduce (ɛ)-Lorentzian para-Sasakian manifolds with indefinite metric which also include usual LP-Sasakian manifold. The present paper is organized as follows:

Section 1 is introductory. In Section 2, we define (ɛ)-LP-Sasakian manifolds and give an example of such a manifold. We also give some basic results of such a manifold in the same section. In Section 3, we study conformally flat (ɛ)-LP-Sasakian manifolds. Finally, we consider Weyl-semisymmetric (ɛ)-LP-Sasakian manifolds.

2. (ɛ)-Lorentzian para-Sasakian manifolds

An n-dimensional differentiable manifold is called (ɛ)-Lorentzian para-Sasakian manifold if the following conditions hold:

\[\phi^2 = I + \eta (X) \xi, \quad \eta(\xi) = -1, \]

Received November 1, 2010; Revised January 20, 2011.
2010 Mathematics Subject Classification. 53C40, 53C50, 53C55.
Key words and phrases. (ɛ)-Lorentzian para-Sasakian manifold, φ-recurrent, η-Einstein manifold, conformally flat, quasi-constant curvature, Weyl-semisymmetric.
(2.2) \[g(\xi, \xi) = \epsilon, \quad \eta(X) = \epsilon g(X, \xi), \]
(2.3) \[g(\phi X, \phi Y) = g(X, Y) + \epsilon \eta(X) \eta(Y), \]
where \(\epsilon \) is 1 or \(-1\) according as \(\xi \) is space-like or time-like vector field. Also in \((\epsilon)\)-Lorentzian para-Sasakian manifold, we have
(2.4) \[(\nabla_X \phi) Y = g(X, Y) \xi + \epsilon \eta(Y) X + 2\epsilon \eta(X) \eta(Y), \]
where \(\nabla \) denotes the operator of covariant differentiation with respect to the Lorentzian metric \(g \).

Definition 2.1. An \((\epsilon)\)-LP-Sasakian manifold will be called a manifold of quasi-constant curvature if the curvature tensor \(\hat{R} \) of type \((0, 4)\) satisfies the condition
(2.5) \[
\hat{R}(X, Y, Z, W) = a [g(Y, Z) g(X, W) - g(X, Z) g(Y, W)] \\
+ b [g(X, W) T(Y) T(Z) - g(X, Z) T(Y) T(W) \\
+ g(Y, Z) T(X) T(W) - g(Y, W) T(X) T(Z)],
\]
where \(\hat{R}(X, Y, Z, W) = g(R(X, Y) Z, W), \ R \) is the curvature tensor of type \((1, 3); a, b \) are scalar functions and \(\rho \) is a unit vector field defined by
(2.6) \[g(X, \rho) = T(X). \]

The notion of quasi-constant curvature for Riemannian manifolds were given by Chen and Yano [2].

Definition 2.2. An \((\epsilon)\)-LP-Sasakian manifold will be called an \(\eta\)-Einstein manifold if the Ricci tensor \(S \) of type \((0, 2)\) satisfies
(2.7) \[S(X, Y) = a g(X, Y) + b \eta(X) \eta(Y), \]
where \(a \) and \(b \) are scalar functions.

Definition 2.3. A type of Riemannian manifold whose curvature tensor \(\hat{R} \) of type \((0, 4)\) satisfies the condition
(2.8) \[\hat{R}(X, Y, Z, W) = F(Y, Z) F(X, W) - F(X, Z) F(Y, W), \]
where \(F \) is a symmetric tensor of type \((0, 2)\) is called a special manifold with the associated symmetric tensor \(F \) and is denoted by \(\psi(F) \).

In 1956, S. S. Chern [3] study such type of manifolds. These manifolds are important for the following reasons:

Firstly, for possessing some remarkable properties relating to curvature and characteristic classes and secondly, for containing a manifold of quasi-constant curvature [2].

Definition 2.4. An \((\epsilon)\)-LP-Sasakian manifold will be called Weyl-semisymmetric if it satisfies \((R, (X, Y) C)(Y, Z) W = 0, \) where \(R(X, Y) \) denotes the curvature operator and \(C(Y, Z) W \) is the Weyl-conformal curvature tensor.
Lemma 2.1. An \((\epsilon)-\text{contact metric manifold}\) is an \((\epsilon)-\text{LP-Sasakian manifold} if and only if
\[
\nabla_X \xi = \epsilon \phi X.
\]

Proof. Let the manifold be an \((\epsilon)-\text{Lorentzian para-Sasakian manifold}\). Then from the equation (2.4) it follows that
\[
\nabla_X \phi Y - \phi \nabla_X Y = g(X, Y) \xi + \epsilon \eta(Y) X + 2\epsilon \eta(X) \eta(Y) \xi.
\]
Putting \(Y = \xi\), we get
\[
-\phi \nabla_X \xi = -\epsilon (X + \eta(X) \xi),
\]
or,
\[
\phi \nabla_X \xi = \epsilon \phi^2(X),
\]
which implies,
\[
\nabla_X \xi = \epsilon \phi(X).
\]
Conversely, let the above relation holds. Now the fundamental 2-form \(\Phi\) of the \((\epsilon)-\text{almost contact metric structure}\) is defined by \([5]\)
\[
\Phi(X, Y) = g(X, \phi Y)
\]
for all vector fields \(X, Y \in \chi(M)\). Now since \(\eta \wedge \phi\) is up to a constant factor the volume element of the manifold, it is parallel with respect to \(\nabla\), i.e., \(\nabla_X (\eta \wedge \phi) = 0\). Hence we have
\[
(\nabla_X \eta)(Y) \Phi(Z, W) + \eta(Y)(\nabla_X \Phi)(Z, W) + (\nabla_X \eta)(Z) \Phi(W, Y)
\]
\[
+ \eta(Z)(\nabla_X \Phi)(W, Y) + (\nabla_X \eta)(W) \Phi(Y, Z) + (\nabla_X \eta)(W) \Phi(Y, Z) + \eta(W) (\nabla_X \Phi)(Y, Z) = 0.
\]
Putting \(W = \xi\), we get
\[
(\nabla_X \Phi) Y = \epsilon g(\Phi \nabla_X \xi, Y) \xi + \eta(Y) \Phi \nabla_X \xi,
\]
Now using the value of \(\nabla_X \xi\), we have
\[
(\nabla_X \phi) Y = g(X, Y) \xi + \epsilon \eta(Y) X + 2\epsilon \eta(X) \eta(Y) \xi.
\]
Hence the manifold is an \((\epsilon)-\text{Lorentzian para-Sasakian manifold}\). \(\Box\)

Example. Consider the 3-dimensional manifold \(M = [x, y, z] \in \mathbb{R}^3, z \neq 0\), where \((x, y, z)\) are the standard coordinates in \(\mathbb{R}^3\). The vector fields
\[
e_1 = e^z \frac{\partial}{\partial y}, e_2 = e^z \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right), e_3 = \frac{\partial}{\partial z}
\]
are linearly independent at each point of \(M\). Let \(g\) be the Lorentzian metric defined by
\[
g(e_1, e_3) = g(e_2, e_3) = g(e_1, e_2) = 0,
g(e_1, e_1) = g(e_2, e_2) = \epsilon, \quad g(e_3, e_3) = -\epsilon.
\]
Let \(\eta \) be the 1-form defined by \(\eta(Z) = g(Z, e_3) \) for any \(Z \in \chi(M) \). Let \(\phi \) be the \((1,1)\) tensor field defined by \(\phi e_1 = -e_1, \phi e_2 = -e_2, \phi e_3 = 0 \). Then using the linearity of \(\phi \) and \(g \), we have

\[
\eta(e_3) = -1, \quad \phi^2(Z) = Z + \eta(Z) \xi, \quad \text{and} \quad g(\phi Z, \phi W) = g(Z, W) + \epsilon \eta(Z) \eta(W)
\]

for any \(Z, W \in \chi(M) \). Let \(\nabla \) be the Levi-Civita connection with respect to the Lorentzian metric \(g \). Then we have

\[
[e_1, e_2] = 0, \quad [e_1, e_3] = -\epsilon e_1, \quad [e_2, e_3] = -\epsilon e_2.
\]

The Riemannian connection \(\nabla \) of the Lorentzian metric \(g \) is given by

\[
2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g([X, Y], Z) + g(Z, [X, Y])
\]

which is known as Koszul’s formula.

From Koszul’s formula, we have

\[
\nabla_{e_1} e_3 = -\epsilon e_1, \quad \nabla_{e_2} e_3 = -\epsilon e_2, \quad \nabla_{e_3} e_3 = 0,
\]

\[
\nabla_{e_1} e_1 = -\epsilon e_3, \quad \nabla_{e_2} e_2 = 0, \quad \nabla_{e_3} e_1 = 0.
\]

From the above result it can be easily seen that the manifold satisfies

\[
\nabla_X \xi = \epsilon \phi X
\]

for \(\xi = e_3 \). Hence the manifold under consideration is an \((\epsilon)\)-Lorentzian para-Sasakian manifold.

Lemma 2.2. In an \((\epsilon)\)-Lorentzian para-Sasakian manifold (2.10) \((\nabla_X \eta)(Y) = g(\phi X, Y)\).

Proof.

\[
(\nabla_X \eta)(Y) = \nabla_X \eta(Y) - \eta(\nabla_X Y) = \epsilon \nabla_X g(Y, \xi) - \epsilon g(\nabla_X Y, \xi) - \epsilon g(Y, \nabla_X \xi) + \epsilon g(Y, \nabla_X \xi).
\]

Using the value of \(\nabla_X \xi \), we have

\[
(\nabla_X \eta)(Y) = g(\phi X, Y). \quad \square
\]

Lemma 2.3. In an \((\epsilon)\)-Lorentzian para-Sasakian manifold (2.11) \(R(X, Y) \xi = \eta(Y) X - \eta(X) Y \).

Proof.

\[
R(X, Y) \xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X,Y]} \xi = \nabla_X (\epsilon \phi Y) - \nabla_Y (\epsilon \phi X) - \epsilon \phi ([X, Y]).
\]

The above relation after simplification gives

\[
R(X, Y) \xi = \eta(Y) X - \eta(X) Y. \quad \square
\]
Note. From the equation (2.11) it follows that in an \((\epsilon)\)-Lorentzian para-Sasakian manifold,
\[(2.12)\]
\[R(\xi, X) Y = \epsilon g(X, Y) \xi - \eta(Y) X.\]

Also in an \((\epsilon)\)-Lorentzian para-Sasakian manifold
\[(2.13)\]
\[\eta(R(X, Y) Z) = \epsilon (g(Y, Z) \eta(X) - g(X, Z) \eta(Y)).\]

Lemma 2.4. In an \((\epsilon)\)-Lorentzian para-Sasakian manifold
\[(2.14)\]
\[S(X, \xi) = (n - 1) \eta(X).\]

Proof. From the equation (2.13) we have
\[g(R(X, Y) Z, \xi) = \epsilon g(Y, Z) g(X, \xi) - \epsilon g(X, Z) g(Y, \xi).\]

Putting \(Y = Z = e_i\), where \(\{e_i\}\) is an orthonormal basis of the tangent space at each point of the manifold, and taking summation over \(i\) where \(i = 1, 2, \ldots, n\), we get
\[S(X, \xi) = (n - 1) \eta(X).\]

3. Conformally flat \((\epsilon)\)-Lorentzian para-Sasakian manifold

The Weyl conformal curvature tensor \(C\) of type \((1, 3)\) of an \(n\)-dimensional Riemannian manifold is given by
\[(3.1)\]
\[C(X, Y) Z = R(X, Y) Z - \frac{1}{(n - 2)} [S(Y, Z) X - S(X, Z) Y + g(Y, Z) QX - g(X, Z) QY] + \frac{r}{(n - 1)(n - 2)} [g(Y, Z) X - g(X, Z) Y],\]

where \(Q\) is the Ricci operator defined by \(g(QX, Y) = S(X, Y)\) and \(r\) is the scalar curvature. Let us suppose that the manifold is conformally flat. Then from the above equation, we have
\[(3.2)\]
\[g(R(X, Y) Z, W) = \frac{1}{(n - 2)} [S(Y, Z) g(X, W) - S(X, Z) g(Y, W) + g(Y, Z) S(X, W) - g(X, Z) S(Y, W)] - \frac{r}{(n - 1)(n - 2)} [g(Y, Z) g(X, W) - g(X, Z) g(Y, W)].\]

Putting \(W = \xi\) and using the equation (2.14), the above equation gives
\[(3.3)\]
\[\epsilon \eta(R(X, Y) Z) = \frac{1}{(n - 2)} [\epsilon S(Y, Z) \eta(X) - \epsilon S(X, Z) \eta(Y) + (n - 1) g(Y, Z) \eta(X) - (n - 1) g(X, Z) \eta(Y)] - \frac{r}{(n - 1)(n - 2)} [\epsilon g(Y, Z) \eta(X) - \epsilon g(X, Z) \eta(Y)].\]
In view of the equation (2.13) and $\epsilon^2 = 1$, the above equation yields

\begin{equation}
S(Y, Z) \eta(X)
= S(X, Z) \eta(Y) + \left(\frac{r}{n-1} - \epsilon\right) (g(Y, Z) \eta(X) - g(X, Z) \eta(Y)).
\end{equation}

For $X = \xi$, we get

\begin{equation}
S(Y, Z) = \left(\frac{r}{n-1} - \epsilon\right) g(Y, Z) - \left(\frac{r \epsilon + n - n^2}{n-1}\right) \eta(Y) \eta(Z).
\end{equation}

Hence we can state the following:

Theorem 3.1. An $(2n + 1)$-dimensional coformally flat (ϵ)-Lorentzian para-Sasakian manifold is an η-Einstein manifold.

Using the equation (3.5) in (3.2), we get

\begin{equation}
g(R(X, Y) Z, W)
= \frac{1}{n-2} \left(\frac{2r}{n-1} - 2\epsilon\right) g(Y, Z) g(X, W)
- \left(\frac{2r}{n-1} - 2\epsilon\right) g(X, Z) g(Y, W) - \left(\frac{r \epsilon + n - n^2}{n-1}(n-2)\right)
[\eta(Y) \eta(Z) g(X, W) - \eta(X) \eta(Z) g(Y, W)]
+ \eta(X) \eta(W) g(Y, Z) - \eta(Y) \eta(W) g(X, Z)
- \eta(X) \eta(W) g(Y, Z) - \eta(Y) \eta(Z) g(X, W)].
\end{equation}

The above relation can be written as

\begin{equation}
g(R(X, Y) Z, W)
= \frac{r - 2n \epsilon + 2\epsilon}{(n-1)(n-2)} \left[g(Y, Z) g(X, W) - g(X, Z) g(Y, W)\right]
- \left(\frac{r \epsilon + n - n^2}{(n-1)(n-2)}\right) [\eta(X) \eta(Z) g(Y, W) + \eta(Y) \eta(W) g(X, Z)]
- \eta(X) \eta(W) g(Y, Z) - \eta(Y) \eta(Z) g(X, W)].
\end{equation}

In view of Definition (2.1) and the above relation we have the following:

Theorem 3.2. An n-dimensional coformally flat (ϵ)-Lorentzian para-Sasakian manifold is of quasi-constant curvature.

It is also proved that a $\psi(F)_n$ contains a manifold of quasi-constant curvature as a subclass:

Let

\begin{equation}
F(X, Y) = \sqrt{a} g(X, Y) + \frac{b}{\sqrt{a}} T(X) T(Y).
\end{equation}

Now from the equation (2.5) we know that

\begin{equation}
\end{equation}
Therefore the manifold of quasi-constant curvature is a \(\psi(F)_n \).

From the above condition and Theorem 3.2 we have the following:

Theorem 3.3. A conformally flat \(\epsilon \)-Lorentzian para-Weyl-semisymmetric Sasakian manifold is a \(\psi(F)_n \).

4. Weyl-semisymmetric \(\epsilon \)-Lorentzian para-Sasakian manifolds

An \(\epsilon \)-Lorentzian para-Sasakian manifold is said to be Weyl-semisymmetric if

\[R.C = 0. \]

From the equation (3.1), we get

\[
g(C(X,Y)Z,\xi) = g(R(X,Y)Z,\xi) - \frac{1}{n-2} [g(Y,Z)S(X,\xi) - g(X,Z)S(Y,\xi) + S(Y,Z)g(X,\xi)]
\]

(4.1)

From the above equation, we have

\[
\eta(C(X,Y)Z) = \frac{1}{(n-2)^2} \left(\frac{r}{n-1} - \epsilon \right) [g(Y,Z)\eta(X) - \eta(Y)g(X,Z) + S(X,Z)\eta(Y)].
\]

(4.2)

Putting \(Z = \xi \), in the above equation, we have

\[
\eta(C(X,Y)\xi) = 0.
\]

(4.3)

Again putting \(X = \xi \) in the equation (4.2), we get

\[
\eta(C(\xi,Y)Z) = \frac{1}{n-2} \left(\frac{r}{n-1} - \epsilon \right) [g(Y,Z) - \epsilon \eta(Y)\eta(Z)] - S(Y,Z) + (n-1)\eta(Y)\eta(Z).
\]

(4.4)

If the manifold is Weyl-semisymmetric, then we have

\[
g[R(\xi,Y)C(U,V)W,\xi] - g[C(R(\xi,Y)U,V)W,\xi] - g[C(U,R(\xi,Y)V,W),\xi] - g[C(U,V)R(\xi,Y)W,\xi] = 0.
\]

(4.5)

From the equation (2.12), we have

\[
g[R(\xi,X)Y,\xi] = g(X,Y) - \epsilon \eta(Y\eta(X)).
\]

(4.6)

Using the equation (4.6) in (4.5), we get
\[g(Y, C(U, V)W) - \epsilon \eta(C(U, V)W)\eta(Y) \]
\[- g[C(\epsilon g(Y, U) - \eta(U) Y, V)W, \xi] \]
\[- g[C(U, \epsilon g(Y, V) - \eta(V) Y)W, \xi] \]
\[- g[C(U, V)(\epsilon g(Y, W) - \eta(W) Y), \xi] = 0. \]

From the above equation, we have
\[- \dot{C}(U, V, W, Y) + \eta(Y)\eta[C(U, V)W) \]
\[- \epsilon \eta(U)\eta(C(Y, V)W) - \epsilon \eta(V)\eta(C(U, Y)W) \]
\[- \epsilon \eta(W)\eta(C(U, V)Y) + g(Y, U)\eta(C(\xi, V)W) \]
\[+ g(Y, V)\eta(C(U, \xi)W) + g(Y, W)\eta(C(U, V)\xi) = 0, \]
where \(\dot{C}(U, V, W, Y) = g(C(U, V)W, Y) \).

Putting \(Y = U \), we get
\[- \dot{C}(U, V, W, U) + \eta(U)\eta[C(U, V)W) \]
\[(V)\eta(C(U, U)W) \]
\[- \epsilon \eta(W)\eta(C(U, V)U) + g(U, U)\eta(C(\xi, V)W) \]
\[+ g(U, V)\eta(C(U, \xi)W) + g(U, W)\eta(C(U, V)\xi) = 0. \]

Again putting \(U = e_i \), where \(\{e_i\} \) is an orthonormal basis of the tangent space at each point of the manifold, and taking summation over \(i \) where \(i = 1, 2, \ldots, n \), we get
\[\sum_{i=1}^{n} \dot{C}(e_i, V, W, e_i) = 0 \]
and using (4.3) in (4.9), we have
\[\eta(C(\xi, V)W) = 0. \]

Using the equation (4.3) and (4.10) in (4.8), we get
\[- \dot{C}(U, V, W, Y) + \eta(Y)\eta[C(U, V)W) \]
\[- \epsilon \eta(U)\eta(C(Y, V)W) - \epsilon \eta(V)\eta(C(U, Y)W) \]
\[- \epsilon \eta(W)\eta(C(U, V)Y) = 0. \]

Using the equation (4.2) in (4.11), we get
\[- \dot{C}(U, V, W, Y) - \frac{\eta(W)}{n - 2}\left\{ \frac{\epsilon r}{n - 1} - 1 \right\} g(Y, V)\eta(U) \]
\[- g(U, Y)\eta(V) - \epsilon (S(Y, V)\eta(U) - S(Y, U)\eta(V)) \]
\[- \frac{(\epsilon - 1)}{n - 2}\left\{ \frac{\epsilon r}{n - 1} - 1 \right\} [g(U, W)\eta(V)\eta(Y) \]
\[- g(V, W)\eta(U)\eta(Y) - S(U, W)\eta(Y)(V) \]
\[+ S(V, W)\eta(U)\eta(Y)] = 0. \]
From the equation (4.10), we have from (4.4)

\begin{equation}
S(Y, Z) = \left(\frac{r}{n-1} - \epsilon \right) g(Y, Z) - \left(\frac{r \epsilon}{n-1} - n \right) \eta(Y) \eta(Z).
\end{equation}

Using the equation (4.13) in (4.12)

\begin{equation}
C(U, V, W, Y) = 0.
\end{equation}

From the above equation we see that $R.C = 0$ implies that $C = 0$. Hence using this condition with the help of Theorem 3.2 we have the following:

Theorem 4.1. A n-dimensional Weyl-semisymmetric (ϵ)-Lorentzian para-Sasakian manifold is of quasi-constant curvature.

Theorem 3.3 and (4.14) leads the following:

Corollary 4.1. A n-dimensional Weyl-semisymmetric (ϵ)-Lorentzian para-Sasakian manifold is a (F).

Application. (ϵ)-Lorentzian para-Sasakian manifolds are used in the theory of Relativity and Newton's law of gravitational field.

Acknowledgement. The authors are thankful to the referee for pointing out the typographical errors and linguistic corrections.

References

Rajendra Prasad
Department of Mathematics & Astronomy
University of Lucknow
Lucknow-226007, India
E-mail address: rp.manpur@rediffmail.com

Vibha Srivastava
Department of Mathematics & Astronomy
University of Lucknow
Lucknow-226007, India
E-mail address: Vibha.one22@rediffmail.com