A NOTE ON THE GENERALIZED MYERS THEOREM FOR FINSLER MANIFOLDS

BING-YE WU

Abstract. In this note we establish a generalized Myers theorem under line integral curvature bound for Finsler manifolds.

1. Introduction

The celebrated Myers theorem in global Riemannian geometry says that if a Riemannian manifold M satisfies $\text{Ric}(v) \geq (n-1)a > 0$ for all unit vector v, then M is compact and

$$\text{diam}(M) \leq \frac{\pi}{\sqrt{a}}.$$

There are many generalizations of Myers theorem (see e.g., [2, 3, 7]). In [7] the author proved the following result.

Theorem 1.1. Let (M, g) be an n-dimensional complete Riemannian manifold. Then for any $\delta > 0$, $a > 0$, there exists $\epsilon = \epsilon(n, a, \delta)$ satisfying the following. If for any $p \in M$ and each minimal geodesic γ emanating from p, the Ricci curvature satisfies

$$\int_{\gamma} \max\{(n-1)a - \text{Ric}(\gamma'(t)), 0\} dt \leq \epsilon(n, a, \delta),$$

then M is compact with

$$\text{diam}(M) \leq \frac{\pi}{\sqrt{a}} + \delta.$$

Myers theorem has also been generalized to Finsler manifolds [1]. In this note we shall prove the following result which generalizes Theorem 1.1.

Theorem 1.2. Let (M, F) be an n-dimensional forward complete Finsler manifold. If there is $\Lambda > 0$ such that for any $p \in M$ and each minimal geodesic γ
emanating from p, the Ricci curvature satisfies
\[
\int_{\gamma} \max\{(n-1)a - \text{Ric}(\gamma'(t)), 0\} \, dt \leq \Lambda,
\]
then M is compact with
\[
\text{diam}(M) \leq \frac{\pi}{\sqrt{a}} + \frac{\Lambda}{(n-1)a}.
\]

2. Finsler geometry

In this section we briefly recall some fundamental materials of Finsler geometry, and for details one is referred to see [1, 4, 5, 6]. Let \((M, F)\) be a Finsler \(n\)-manifold with Finsler metric \(F : TM \to [0, \infty)\). Let \((x, y) = (x^i, y^i)\) be local coordinates on \(TM\), and \(\pi : TM \setminus 0 \to M\) the natural projection. Unlike in the Riemannian case, most Finsler quantities are functions of \(TM\) rather than \(M\).

The fundamental tensor \(g_{ij}\) is defined by
\[
g_{ij}(x, y) := \frac{1}{2} \frac{\partial^2 F^2(x, y)}{\partial y^i \partial y^j}.
\]
Let \(R^i_{\ jkl}\) be the first Chern curvature tensor, and \(R^i_{\ jkl} := g_{js} R_{s \ jkl}^{\ *}\). Write \(g_y = g_{ij}(x, y) dx^i \otimes dx^j, R_y = R_{ijkl}(x, y) dx^i \otimes dx^j \otimes dx^k \otimes dx^l\). For a tangent plane \(P \subset T_x M\), let
\[
K(P, y) = K(y; u) := \frac{R_y(y, u, u, y)}{g_y(y, u) g_y(u, u) - [g_y(y, u)]^2},
\]
where \(y, u \in P\) are tangent vectors such that \(P = \text{span}\{y, u\}\). We call \(K(P, y)\) the flag curvature of \(P\) with flag pole \(y\). Let
\[
\text{Ric}(y) = \sum_i K(y; e_i),
\]
where \(\{e_1, \ldots, e_n\}\) is a \(g_y\)-orthogonal basis for the corresponding tangent space. We call \(\text{Ric}(y)\) the Ricci curvature of \(y\).

Let \(V = \psi \partial / \partial x^i\) be a non-vanishing vector field on an open subset \(U \subset M\). One can introduce a Riemannian metric \(\tilde{g} = g_V\) and a linear connection \(\nabla^V\) (called Chern connection) on the tangent bundle over \(U\) as follows:
\[
\nabla^V_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j} := \Gamma^k_{ij}(x, v) \frac{\partial}{\partial x^k},
\]
where \(\Gamma^k_{ij}(x, v)\) are the Chern connection coefficients.

The Legendre transformation \(l : TM \to T^* M\) is defined by
\[
l(Y) = \begin{cases} g_Y(Y, \cdot), & Y \neq 0 \\ 0, & Y = 0. \end{cases}
\]
Now let \(f : M \to \mathbb{R}\) be a smooth function on \(M\). The gradient of \(f\) is defined by \(\nabla f = l^{-1}(df)\). Thus we have
\[
df(X) = g_V(f, X), \quad X \in TM.
\]
Let \(U = \{ x \in M : \nabla f \mid_x \neq 0 \} \). We define the Hessian \(H(f) \) of \(f \) on \(U \) as follows:
\[
H(f)(X, Y) := XY(f) - \nabla_X Y(f), \quad \forall X, Y \in TM \mid_U.
\]
It is known that \(H(f) \) is symmetric, and it can be rewritten as (see [6])
\[
H(f)(X, Y) = g_{\nabla X} (\nabla_{\nabla X} f, Y).
\]
It should be noted that the notion of Hessian defined here is different from that in [4]. In that case \(H(f) \) is in fact defined by
\[
H(f)(X, X) := X \cdot X \cdot f - \nabla_X X(f), \quad \forall X \in TM \mid U.
\]
and there is no definition for \(H(f)(X, Y) \) if \(X \neq Y \). The advantage of our definition is that \(H(f) \) is a symmetric bilinear form and we can treat it by using the theory of symmetric matrix.

For any fixed \(p \in M \) let \(r = d_F(p, \cdot) \) be the distance function from \(p \) induced by Finsler metric \(F \), and \((r, \theta)\) the polar coordinates on \(M \setminus C(p) \), where \(C(p) \) is the cut loci of \(p \). The following lemma is crucial to prove Theorem 1.2.

Lemma 2.1. Let \(h = h(r, \theta) = \text{trace}_{g_{e_r}} H(r) \). Then \(\lim_{r \to 0^+} h = +\infty \), and
\[
\frac{dh}{dr} \leq -\text{Ric}(\nabla r) - \frac{h^2}{n-1}.
\]

Proof. Let \(E_1, \ldots, E_n \) be the local \(g_{e_r} \)-orthonormal frame fields on \(M \setminus C(p) \). We have the following equality where \(r \) is smooth (see (5.1) of [6]):
\[
\frac{d}{dr} \text{trace}_{g_{e_r}} H(r) = -\text{Ric}(\nabla r) - \sum_{i,j} (H(r)(E_i, E_j))^2.
\]
Note that \(\nabla r \) is a geodesic field, and thus \(H(r)(\nabla r, \cdot) = 0 \), which together with above equality and Schwartz inequality we clearly have the desired inequality. On the other hand, for sufficiently small \(\epsilon \) let \(b \) be the upper bound of flag curvature on \(B_p(\epsilon) \), then by Hessian comparison theorem [6] it follows that
\[
h(r, \theta) \geq (n-1)ct_b(r) = \begin{cases} (n-1)\sqrt{b} \cdot \cotan(\sqrt{br}), & b > 0 \\ \frac{n-1}{b}, & b = 0 \\ (n-1)\sqrt{-b} \cdot \cotanh(\sqrt{-br}), & b < 0 \end{cases}, \quad \forall r < \epsilon,
\]
and consequently, \(\lim_{r \to 0^+} h = +\infty \).

3. Proof of Theorem 1.2

Now let us complete the proof of Theorem 1.2. For any fixed \(p, q \in M \) let \(\gamma : [0, L] \to M \) be the minimal unit-speeded geodesic from \(p \) to \(q \) with \(L = r(q) = d_F(p, q) \). Let \(h = h(r, \theta) \) be defined by Lemma 2.1, and consider \(f = f(t) := h(\gamma(t)) \), then \(f \) is smooth on \((0, L)\). By Lemma 2.1 one has
\[
f'(t) \leq -\text{Ric}(\gamma'(t)) - \frac{f(t)^2}{n-1}.
\]
and consequently,

\[
(\arccot \left(\frac{f}{(n-1)\sqrt{a}} \right))' = -\frac{1}{(n-1)\sqrt{a}} \frac{f'}{1 + \frac{f^2}{(n-1)^2 a}}
\]

(1)

\[
\geq \frac{\text{Ric}(\gamma') + \frac{f^2}{\pi - 1}}{(1 + \frac{f^2}{(n-1)^2 a})(n-1)\sqrt{a}}
\]

\[
= \frac{\text{Ric}(\gamma') - (n-1)a + (n-1)a \left(1 + \frac{f^2}{(n-1)^2 a}\right)}{(1 + \frac{f^2}{(n-1)^2 a})(n-1)\sqrt{a}}
\]

\[
\geq -\frac{1}{(n-1)\sqrt{a}} \max\{(n-1)a - \text{Ric}(\gamma'), 0\} + \sqrt{a}.
\]

For any small \(\varepsilon > 0\) integrating (1) on \((\varepsilon, L-\varepsilon)\) we get

\[
\pi - \arccot \left(\frac{f(\varepsilon)}{(n-1)\sqrt{a}} \right) > \arccot \left(\frac{f(L-\varepsilon)}{(n-1)\sqrt{a}} \right) - \arccot \left(\frac{f(\varepsilon)}{(n-1)\sqrt{a}} \right)
\]

\[
\geq -\frac{1}{(n-1)\sqrt{a}} \int_{\varepsilon}^{L-\varepsilon} \max\{(n-1)a - \text{Ric}(\gamma'(t)), 0\} dt + (L-2\varepsilon)\sqrt{a}.
\]

On the other hand, \(\lim_{t \to +0} f(t) = +\infty\) by Lemma 2.1, and thus

\[
\lim_{t \to +0} \arccot \left(\frac{f(t)}{(n-1)\sqrt{a}} \right) = 0.
\]

Now let \(\varepsilon \to +0\) in (2) it follows that

\[
\pi \geq -\frac{1}{(n-1)\sqrt{a}} \int_{0}^{L} \max\{(n-1)a - \text{Ric}(\gamma'(t)), 0\} dt + L\sqrt{a}
\]

\[
\geq -\frac{\Lambda}{(n-1)\sqrt{a}} + L\sqrt{a},
\]

and consequently,

\[
L \leq \frac{\pi}{\sqrt{a}} + \frac{\Lambda}{(n-1)a}.
\]

So we complete the proof.

References

Department of Mathematics
Minjiang University
Fuzhou 350108, Fujian, P. R. China
E-mail address: bingyewu@yahoo.cn