A NOTE ON THE q-ANALOGUE OF KIM’S p-ADIC log GAMMA TYPE FUNCTIONS ASSOCIATED WITH q-EXTENSION OF GENOCCHI AND EULER NUMBERS WITH WEIGHT α

SERKAN ARACI, MEHMET AÇIKGOZ, AND KYOUNG HO PARK

Abstract. In this paper, we introduce the q-analogue of p-adic log gamma functions with weight alpha. Moreover, we give a relationship between weighted p-adic q-log gamma functions and q-extension of Genocchi and Euler numbers with weight alpha.

1. Introduction

Assume that p is a fixed odd prime number. Throughout this paper \mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p will denote the ring of integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_p, respectively. Also we denote $\mathbb{N}^* = \mathbb{N} \cup \{0\}$ and $\exp(x) = e^x$. Let $v_p: \mathbb{C}_p \to \mathbb{Q} \cup \{\infty\}$ (\mathbb{Q} is the field of rational numbers) denote the p-adic valuation of \mathbb{C}_p normalized so that $v_p(p) = 1$. The absolute value on \mathbb{C}_p will be denoted as $|\cdot|$, and $|x|_p = p^{-v_p(x)}$ for $x \in \mathbb{C}_p$. When one talks of q-extensions, q is considered in many ways, e.g. as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, we assume that $|q| < 1$. If $q \in \mathbb{C}_p$, we assume $|1 - q|_p < p^{-\frac{1}{p-1}}$, so that $q^x = \exp(x \log q)$ for $|x|_p \leq 1$. We use the following notation

\[(1.1) \quad [x]_q = \frac{1 - q^x}{1 - q}, \quad [x]_{-q} = \frac{1 - (-q)^x}{1 + q}, \]

where $\lim_{q \to 1} [x]_q = x$; cf. [1-21].

For a fixed positive integer d, we set

\[X = X_d = \lim_{\mathcal{N}} \mathbb{Z}/dp^{\mathcal{N}}\mathbb{Z}, \quad X^* = \bigcup_{0 < a < dp \atop (a, p) = 1} a + dp\mathbb{Z}_p \]

Received December 2, 2011.

2010 Mathematics Subject Classification. Primary 46A15; Secondary 41A65.

Key words and phrases. modified q-Genocchi numbers with weight alpha and beta, modified q-Euler numbers with weight alpha and beta, p-adic log gamma functions.

©2013 The Korean Mathematical Society
and
\[a + dp^N \mathbb{Z}_p = \left\{ x \in X \mid x \equiv a \pmod{dp^N} \right\}, \]
where \(a \in \mathbb{Z} \) satisfies the condition \(0 \leq a < dp^N \) (see [6, Section 2]).

It is known that
\[\mu_q (x + p^N \mathbb{Z}_p) = \frac{q^x}{[p^N]_q} \]
is a distribution on \(X \) for \(q \in \mathbb{C}_p \) with \(|1 - q|_p \leq 1 \).

Let \(UD(\mathbb{Z}_p) \) be the set of uniformly differentiable function on \(\mathbb{Z}_p \). We say that \(f \) is a uniformly differentiable function at a point \(a \in \mathbb{Z}_p \), if the difference quotient
\[F_f (x, y) = \frac{f(x) - f(y)}{x - y} \]
has a limit \(f'(a) \) as \((x, y) \to (a, a)\) and denote this by \(f \in UD(\mathbb{Z}_p) \).

The \(p \)-adic \(q \)-integral of the function \(f \in UD(\mathbb{Z}_p) \) is defined by
\[(1.2) \quad I_q (f) = \int_{\mathbb{Z}_p} f(x) \, d\mu_q (x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} f(x) q^x. \]

The bosonic integral is considered by Kim as the bosonic limit \(q \to 1 \),
\[I_1 (f) = \lim_{q \to 1} I_q (f), \]
Similarly, the \(p \)-adic fermionic integration on \(\mathbb{Z}_p \) was defined by Kim as follows:
\[I_{-q} (f) = \lim_{q \to -q} I_q (f) = \int_{\mathbb{Z}_p} f(x) \, d\mu_{-q} (x). \]

Let \(q \to 1 \). Then we have \(p \)-adic fermionic integral on \(\mathbb{Z}_p \) as follows:
\[I_{-1} (f) = \lim_{q \to 1} I_{-q} (f) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x) (-1)^x. \]

Stirling asymptotic series are defined by
\[(1.3) \quad \log \left(\frac{\Gamma (x + 1)}{\sqrt{2\pi}} \right) = \left(x - \frac{1}{2} \right) \log x + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} \frac{B_n}{x^n} - x, \]
where \(B_n \) are familiar \(n \)-th Bernoulli numbers (cf. [5, 6, 21]).

Recently, Araci, Acikgoz and Seo defined \(q \)-Genocchi polynomials with weight \(\alpha \) in [1, 2] by the means of generating function:
\[(1.4) \quad \sum_{n=0}^{\infty} \tilde{G}_{n,q}^{(\alpha)} (x) \frac{t^n}{n!} = t \int_{\mathbb{Z}_p} e^{[x + \xi]_q^{(\alpha)} t} \, d\mu_{-q} (\xi). \]

So from above, we easily get Witt’s formula of \(q \)-Genocchi polynomials with weight \(\alpha \) as follows:
\[(1.5) \quad \frac{\tilde{G}_{n,q}^{(\alpha)} (x)}{n+1} = \int_{\mathbb{Z}_p} [x + \xi]_q^{(\alpha)} \, d\mu_{-q} (\xi), \]
where \(\widetilde{G}^{(\alpha)}_{n,q} (0) := \overline{G}^{(\alpha)}_{n,q} \) are called the \(q \)-extension of Genocchi numbers with weight \(\alpha \) (cf. [1, 2]).

For any non-negative integer \(n \), Ryoo [17] defined the \(q \)-Euler numbers with weight \(\alpha \) as follows:

\[
(1.6) \quad \widetilde{E}^{(\alpha)}_{n,q} = \int_{\mathbb{Z}_p} [\xi]_{q^n} \, d\mu - q(\xi).
\]

By (1.5) and (1.6), we get the following proposition:

Proposition 1. The following identity holds:

\[
(1.7) \quad \widetilde{E}^{(\alpha)}_{n,q} = \frac{\overline{G}^{(\alpha)}_{n+1,q}}{n+1}.
\]

In recent years, T. Kim studied the new formula of the \(p \)-adic \(q \)-analogue of \(\log \left(\Gamma \left(\frac{x+1}{2} \right) \right) \), in which he derived interesting properties of \(q \)-Euler and \(q \)-Bernoulli numbers. By the same motivation, we introduce the \(q \)-analogue of \(p \)-adic log gamma functions with weight alpha. Furthermore, we get interesting properties of \(q \)-extension of Genocchi numbers with weight alpha.

On \(p \)-adic log \(\Gamma \) function with weight \(\alpha \)

In this section, from (1.2), we start by the following expression:

\[
(1.8) \quad q^n I_{-q} (f_n) + (-1)^{n-1} I_{-q} (f) = [2]_q \sum_{l=0}^{n-1} q^l (-1)^{n-1-l} f (l),
\]

where \(f_n (x) = f (x+n) \) and \(n \in \mathbb{N} \) (see [3, 5, 7, 15]).

In particular for \(n = 1 \) into (1.8), we easily see that

\[
(1.9) \quad q I_{-q} (f_1) + I_{-q} (f) = [2]_q f (0).
\]

By the easy application, it is simple to indicate as follows:

\[
(1.10) \quad ((1 + x) \log (1 + x))' = 1 + \log (1 + x) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} x^n,
\]

where \(((1 + x) \log (1 + x))' = \frac{d}{dx} ((1 + x) \log (1 + x)) \).

By the expression of (1.10), we can derive

\[
(1.11) \quad (1 + x) \log (1 + x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} x^{n+1} + x + c, \text{ where } c \text{ is a constant}.
\]

If we substitute \(x = 0 \), we have \(c = 0 \). By (1.10) and (1.11), we easily see that

\[
(1.12) \quad (1 + x) \log (1 + x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} x^{n+1} + x.
\]
It is considered by T. Kim for q-analogue of p adic locally analytic function on $\mathbb{C}_p \backslash \mathbb{Z}_p$ as follows:

$$G_{p,q}(x) = \int_{\mathbb{Z}_p} [x + \xi]_q \left(\log [x + \xi]_q - 1 \right) d\mu_{-q}(\xi) \quad \text{(for details, see [5, 6]).}$$

By the same motivation of (1.13), q-analogue of p-adic locally analytic function on $\mathbb{C}_p \backslash \mathbb{Z}_p$ with weight α as

$$G^{(\alpha)}_{p,q}(x) = \int_{\mathbb{Z}_p} [x + \xi]_q^\alpha \left(\log [x + \xi]_q^\alpha - 1 \right) d\mu_{-q}(\xi).$$

In particular $\alpha = 1$ into (1.14), we easily see that, $G^{(1)}_{p,q}(x) = G_{p,q}(x)$.

It is easy to show that,

$$[x + \xi]_q^\alpha = 1 + q^\alpha + q^{2\alpha} + \ldots + q^{\alpha(x + \xi - 1)}$$

$$= 1 + q^\alpha + q^{2\alpha} + \ldots + q^{\alpha(x-1)} + q^{\alpha x} \left(1 + q^\alpha + q^{2\alpha} + \ldots + q^{\alpha(\xi-1)} \right)$$

$$= [x]_q^\alpha + q^{\alpha x} [\xi]_q^\alpha.$$

We set $x \to q^{\alpha x} [\xi]_q^\alpha$ into (1.12) and by using (1.15), we get an interesting formula:

$$[x + \xi]_q^\alpha \left(\log [x + \xi]_q^\alpha - 1 \right)$$

$$= \left([x]_q^\alpha + q^{\alpha x} [\xi]_q^\alpha \right) \log [x]_q^\alpha + \sum_{n=1}^{\infty} \frac{(-q^{\alpha x})^{n+1} [\xi]_q^{n+1}}{n(n+1)(n+2)} [x]_q^{n+2} - [x]_q^\alpha.$$

If we substitute $\alpha = 1$ into (1.16), we get Kim’s q-analogue of p-adic log gamma function (for details, see [5]).

From expressions of (1.2) and (1.16), we obtain worthwhile and interesting theorems as follows:

Theorem 1. For $x \in \mathbb{C}_p \backslash \mathbb{Z}_p$ the following

$$G^{(\alpha)}_{p,q}(x) = \left([x]_q^\alpha + \frac{q^{\alpha x} \widetilde{G}^{(\alpha)}_{2,q}}{2} \right) \log [x]_q^\alpha + \sum_{n=1}^{\infty} \frac{(-q^{\alpha x})^{n+1} [\xi]_q^{n+1}}{n(n+1)(n+2)} [x]_q^{n+2} - [x]_q^\alpha$$

is true.

Theorem 2. For $x \in \mathbb{C}_p \backslash \mathbb{Z}_p$ the following

$$G^{(\alpha)}_{p,q}(x) = \left([x]_q^\alpha + q^{\alpha x} \widetilde{E}^{(\alpha)}_{1,q} \right) \log [x]_q^\alpha + \sum_{n=1}^{\infty} \frac{(-q^{\alpha x})^{n+1} \widetilde{E}^{(\alpha)}_{n+1,q}}{n(n+1)} [x]_q^n - [x]_q^\alpha$$

is true.
References

Mehmet Acikgoz
Department of Mathematics
Faculty of Science and Arts
University of Gaziantep
27310 Gaziantep, Turkey
E-mail address: acikgoz@gantep.edu.tr

Kyoung Ho Park
Division of General Education
Kwangwoon University
Seoul 139-701, Korea
E-mail address: sagamath@yahoo.co.kr