SEMI-DIVISORIALITY OF HOM-MODULES AND INJECTIVE COGENERATOR OF A QUOTIENT CATEGORY

Hwankoo Kim

Abstract. In this paper, we study w-nullity and (co-)semi-divisoriality of Hom-modules and the semi-divisorial envelope of $\text{Hom}_R(M,N)$ under suitable conditions on $R, M,$ and N. We also investigate an injective cogenerator of a quotient category.

1. Introduction

Let R be an integral domain. In [17] Wang and McCasland defined semi-divisorial closure, or w-closure for torsion-free R-modules. In [7], H. Kim extended this notion to any R-module and introduced and studied the related notions of co-semi-divisoriality and w-nullity. In [7, 8, 9] these concepts were then used to give new module-theoretic characterizations of t-linkative domains, generalized GCD domains, and strong Mori domains, classes of domains widely considered in multiplicative ideal theory.

Earlier, in [1, 12, 13], Beck, Nishi and Shinagawa investigated injective modules over a Krull domain in terms of co-divisorial modules, pseudo-null modules, and divisorial modules and investigated pseudo-nullity and (co-)divisoriality of Home-modules. In particular, it was shown that in the case of a Krull domain R with quotient field K, the injective envelope $E(K/R)$ of K/R is a cogenerator of the quotient category $\text{Mod}(R)//\mathcal{M}_0$, where $\text{Mod}(R)$ is the category of all unitary R-modules and \mathcal{M}_0 is the thick subcategory of the modules with trivial maps into the codivisorial modules. Recently, in [11] Moucouf characterized the rings of Krull type R with quotient field K such that the (canonical) functorial image of $E(K/R)$ is an injective cogenerator of the quotient category $\text{Mod}(R)//\mathcal{M}_0$. Also in [16], Wang investigated the case when Hom-modules are semi-divisorial in torsion-free.

Received July 31, 2009.
2010 Mathematics Subject Classification. Primary 13A15; Secondary 13D30.
Key words and phrases. (co-)semi-divisorial, w-null, cogenerator, Hom-module, H-domain, Krull domain, torsion theory.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0011996).

©2011 The Korean Mathematical Society
In this paper, we study an injective cogenerator of a quotient category and \(w \)-nullity and (co-)semi-divisoriality of Hom-modules using methods developed in [1, 11, 12, 13]. As a corollary, for the class of completely integrally closed domains, we characterize Krull domains in terms of an injective cogenerator of a quotient category. We also investigate the semi-divisorial envelope of \(\text{Hom}_R(M, N) \) under suitable conditions on \(R, M, \) and \(N \).

Throughout this paper, \(R \) denotes an integral domain with quotient field \(K \).

Let \(\mathcal{F}(R) \) denote the set of nonzero fractional ideals of \(R \). Recall that the function on \(\mathcal{F}(R) \) defined by \(A \mapsto (A^{-1})^{-1} = A_w \) is a star operation called the \(w \)-operation, where \(A^{-1} = R :_K A = \{ x \in K \mid xA \subseteq R \} \). An ideal \(J \) of \(R \) is called a Glaz-Vasconcelos ideal if \(J \) is a finitely generated ideal of \(R \) with \(J^{-1} = R \). We abbreviate this as \(GV \)-ideal, denoted by \(J \in \text{GV}(R) \). Following [17], a torsion-free \(R \) module \(M \) is called a \(w \)-module if \(Jx \subseteq M \) for \(J \in \text{GV}(R) \) and \(x \in M \otimes K \) implies that \(x \in M \), which is said to be semi-divisorial in [4]. For a torsion-free \(R \)-module \(M \), Wang and McCasland defined the \(w \)-envelope of \(M \) in [17] as \(M_w = \{ x \in M \otimes K \mid Jx \subseteq M \) for some \(J \in \text{GV}(R) \} \). In particular, if \(I \) is a nonzero fractional ideal, then \(I_w = \{ x \in K \mid Jx \subseteq I \) for some \(J \in \text{GV}(R) \}\). The canonical map \(I \mapsto I_w \) on \(\mathcal{F}(R) \) is a star-operation, denoted \(w \). It was shown in [17] that a prime ideal \(P \) of \(R \) is a \(w \)-ideal if and only if \(P_w \neq R \). Therefore, all prime ideals contained in a proper \(w \)-ideal of \(R \) are also \(w \)-ideals.

We denote by \(w\text{-Max}(R) \) the set of \(w \)-maximal ideals of \(R \). It is also worth noting that \(w \) distributes over (finite) intersections [17, Proposition 2.5]. For unexplained terminology and notation, we refer to [2, 3, 14].

2. \(w \)-null and (co-)semi-divisorial Hom-modules

In [7], H. Kim introduced the notions of “co-semi-divisoriality” and “\(w \)-nullity” of a module as follows. Let \(M \) be a module over an integral domain \(R \) and let \(\tau(M) := \{ x \in M \mid (O(x))_w = R \} \), where \(O(x) := (0 :_R x) = \text{ann}_R(x) \) is the order ideal of \(x \). Then \(\tau(M) \) is a submodule of \(M \). \(M \) is said to be co-semi-divisorial (resp., \(w \)-null) if \(\tau(M) = 0 \) (resp., \(\tau(M) = M \)). Note that the notions of co-semi-divisoriality and \(w \)-nullity can be interpreted in terms of a suitable torsion theory [2, Proposition IX.6.2 and Proposition IX.6.4] (with \(\mathcal{P} = w\text{-Max}(R) \)).

Let \(R \) be an integral domain, let \(\mathcal{F}_r(R) \) denote the full subcategory of \(\text{Mod}(R) \) consisting of all modules \(M \) such that \(M_P = 0 \) for all \(P \in w\text{-Max}(R) \), and let \(\mathcal{F}_c(R) \) denote the full subcategory of all \(R \)-modules \(M \) have no subobject other than zero belonging to \(\mathcal{F}_r(R) \). Finally let \(\mathcal{E}_r(R) \) be the full subcategory of \(\text{Mod}(R) \) consisting of all co-semi-divisorial and semi-divisorial \(R \)-modules.

In an abelian category \(\mathcal{A} \), we have the following definitions:

(a) An injective object \(E \) is called an injective cogenerator if \(\text{Hom}_{\mathcal{A}}(M, E) \neq 0 \) for every \(M \in \mathcal{A} \) that is not a zero object.
(b) A nonempty full subcategory C of A is said to be thick if, for each short exact sequence $0 \to L \to M \to N \to 0$ in A, M is an object of C if and only if L and N are objects of C. It is also called a Serre subcategory of A.

It is clear that $\mathcal{T}(R)$ is a thick subcategory of $\text{Mod}(R)$. Then we can now consider the quotient category $\text{Mod}(R) = \mathcal{T}(R)$ and the canonical functor $T: \text{Mod}(R) \to \text{Mod}(R)/\mathcal{T}(R)$.

As usual, we denote by $E(M)$ the injective envelope of an R-module M. The following result will be useful later on.

Proposition 2.1. The following statements are equivalent for an R-module M.

1. M is co-semi-divisorial, i.e., $M \in \mathcal{T}(R)$.
2. $\mathcal{O}(x)$ is a w-ideal for every element $x \in M$.
3. $(O(x))_w \neq R$ for every nonzero element $x \in M$.
4. $\text{Hom}_R(N, M) = 0$ for every w-null R-module N.
5. $\text{Hom}_R(N, E(M)) = 0$ for every w-null R-module N.

Proof. The equivalences of (1), (2), (3), and (4) are given in [7, Proposition 2.6], while the equivalence of (1) and (5) follows from [6, Proposition 1.2]. □

Note from [17, Proposition 1.4] that the annihilator ideal of any submodule of a co-semi-divisorial module is a w-ideal. Recall from [1] that a module M is said to be codivisorial if the annihilator of every nonzero element of M is a divisorial ideal. Thus in a Krull domain, the notions of co-semi-divisoriality and codivisoriality are the same.

Recall from [16, Definition 4.5] that an R-module M is said to be w-vanishing if $M_P = 0$ for any maximal w-ideal P of R.

Proposition 2.2. Let N be an R-module. Then the following statements are equivalent.

1. N is w-null, i.e., $M \in \mathcal{T}(R)$.
2. For each $x \in N$, $\mathcal{O}(x)$ is not contained in any maximal w-ideal.
3. N is w-vanishing.
4. There is a torsion-free R-module F with $N \cong F_w/F$.
5. $\text{Hom}_R(N, E(M)) = 0$ for every co-semi-divisorial R-module M.

Proof. The equivalences of (1), (2), (3), and (4) are given in [7, Proposition 9.3], while the equivalence of (1) and (5) follows from [6, Proposition 1.2]. □

Now we study w-nullity and (co-)semi-divisoriality of Hom-modules. It was shown in [7, Proposition 3.1] that an R-module M is co-semi-divisorial if and only if $\text{Hom}_R(\mathcal{Z}(R), M) = 0$, where $\mathcal{Z}(R) := \bigoplus_{I \leq R \mid I_w = R} R/I$.

Proposition 2.3. Let R be an integral domain and let M and N be R-modules. If M is co-semi-divisorial, then so is $\text{Hom}_R(N, M)$.

Proof. By [7, Proposition 2.6], it suffices to show that $\text{Hom}(L, \text{Hom}_R(N, M)) \cong \text{Hom}_R(N, \text{Hom}_R(L, M)) = 0$ since M is co-semi-divisorial.

Proposition 2.4. Let R be an integral domain and let M and N be any R-module. If M is w-null, then so is $\text{Tor}_n^R(N, M)$ for all $n \geq 0$.

Proof. First we consider the case $n = 0$. For every co-semi-divisorial R-module L we have $\text{Hom}(N \otimes_R M, E(L)) \cong \text{Hom}_R(N, \text{Hom}_R(M, E(L))) = 0$ since M is w-null; therefore $N \otimes_R M$ is w-null by Proposition 2.2. For the case when $n \geq 1$, we consider a projective resolution of N:

$$\cdots \to P_n \to P_{n-1} \to \cdots \to P_2 \to P_1 \to P_0 \to N \to 0.$$

Then, since each $P_i \otimes M$ is w-null, we can see that $\text{Tor}_n^R(N, M)$ is w-null for every $n \geq 0$ by noting that the submodules and homomorphic images of w-null modules are also w-null.

Now we recall some definitions from [7]: Let M be an R-module. Then $W(M) := \pi^{-1}(\tau(E(M)/M))$ is called the semi-divisorial envelope of M, where $\pi : E(M) \to E(M)/M$ is the canonical projection, M is said to be semi-divisorial if $W(M) = M$, and M is said to be weakly w-flat if $\text{Tor}_1^R(Z(R, M)) = 0$. It is clear from the definition that every injective R-module is semi-divisorial.

Let N be an R-module. Then we denote $U_w(N) := \{L \mid L$ is a submodule of N such that $(L :_R x) = R$ for every $x \in N\}$.

Proposition 2.5. The following statements are equivalent for an R-module M.

1. M is weakly w-flat.
2. $M^p := \text{Hom}_Z(M, \mathbb{Q}/\mathbb{Z})$ is semi-divisorial.
3. $I \otimes_R M \to M$ is a monomorphism for all $I \in U_w(R)$.
4. $L \otimes_R M \to N \otimes_R M$ is a monomorphism for all $L \in U_w(N)$.

Proof. The equivalence of (1) and (2) is given in [7, Proposition 4.3], while the equivalences of (2), (3), and (4) are given in [14, IX, Exercise 25].

Let M be a semi-divisiorial R-module and N be an R-module. Then it was shown in [7, Corollary 3.4] that if $\text{Hom}_R(\text{Tor}_1^R(Z(R), N), M) = 0$, then $\text{Hom}_R(N, M)$ is semi-divisorial.

Theorem 2.6. Let R be an integral domain, M be a semi-divisorial R-module, and N be an R-module. Then $\text{Hom}_R(N, M)$ is semi-divisorial if one of the following conditions is satisfied:

1. M is co-semi-divisorial;
2. N is weakly w-flat.

Proof. It suffices to show that $\text{Hom}_R(\text{Tor}_1^R(Z(R), N), M) = 0$ by [7, Corollary 3.4].
(i) Note that \(R/I \) is \(w \)-null for every \(I \in \mathcal{U}_w(R) \) ([7, Proposition 2.5]). Thus we have that \(\text{Tor}_1^R(R/I, N) \) is \(w \)-null for every \(I \in \mathcal{U}_w(R) \). Now since \(\text{Tor} \) commutes with direct sums and \(w \)-nullity is closed under direct sums, we have \(\text{Tor}_1^R(\mathcal{Z}(R), N) \) is \(w \)-null. Therefore \(\text{Hom}_R(\text{Tor}_1^R(\mathcal{Z}(R), N), M) = 0 \) by the co-semi-divisoriality of \(M \) ([7, Proposition 2.6]).

(ii) This follows from the definition of “weakly \(w \)-flat”.

It was shown in [5, Proposition 2.2] that for a rank one \(\mathcal{N} \) flat ideal \(I \subset K \), the endomorphism \(\text{End}_R(I)(= I : I) \) of \(I \) is semi-divisorial. We extend this result to any \(\mathcal{N} \) flat module in the following corollary. Note that flat \(R \)-modules are torsion-free (and so co-semi-divisorial) for every integral domain \(R \).

Corollary 2.7. Let \(R \) be an integral domain.

1. If \(M \) is a flat \(R \)-module, then \(\text{End}_R(M) \) is a semi-divisorial \(R \)-module.
2. If \(M \) is a co-semi-divisorial and semi-divisorial \(R \)-module, then so is \(\text{End}_R(M) \).
3. If \(M \) is co-semi-divisorial, then \(M^* = \text{Hom}_R(M, R) \) is semi-divisorial.

3. Semi-divisorial equivalence

In this section, we investigate the semi-divisorial envelope of \(\text{Hom}_R(M, N) \) under suitable conditions on \(R, M, \) and \(N \). To do so, we need some definitions and results.

Lemma 3.1 ([15, Proposition 1.1]). Let \(R \) be an integral domain and let \(L \to M \to N \) be an exact sequence of \(R \)-modules. If \(L \) and \(N \) are \(w \)-null, then so is \(M \).

Let \(M \) and \(N \) be \(R \)-modules and let \(f : M \to N \) be an \(R \)-homomorphism. Then \(f \) is said to be \(w \)-injective (resp., \(w \)-surjective) if \(\ker(f) \) (resp., \(\coker(f) \)) is \(w \)-null. And \(f \) is said to be \(w \)-isomorphic if \(f \) is both \(w \)-injective and \(w \)-surjective.

Lemma 3.2 ([15, Lemma 1.2]). Let \(R \) be an integral domain and let \(f : L \to M \) and \(g : M \to N \) be homomorphisms of \(R \)-modules. If \(f \) and \(g \) are \(w \)-injective (resp., \(w \)-surjective or \(w \)-isomorphic), then so is \(gf \).

Theorem 3.3 ([7, Theorem 8.1]). The following statements are equivalent for an integral domain \(R \).

1. If an \(R \)-module \(M \) is injective, then so is \(\tau(M) \).
2. \(E(\tau(M)) = \tau(E(M)) \) for any \(R \)-module \(M \).
3. Let \(N \) be an essential extension of \(M \). If \(M \) is \(w \)-null, then so is \(N \).
4. Let \(I \leq R \) such that \(I_w \neq R \). Then \(I :_R a \) is a \(w \)-ideal for some \(a \in R \setminus I_w \).
5. If \(M \) is not \(w \)-null, then \(M \) has a nonzero co-semi-divisorial submodule.
6. If \(I \leq R \), then there exists an ideal \(J \) of \(R \) such that \(J_w = R \) and \(I = I_w \cap J \).
Recall that an integral domain R is said to be pseudo-t-linkative if R satisfies one of the equivalent conditions of Theorem 3.3.

Proposition 3.4. Let R be a pseudo-t-linkative domain with quotient field $K(\neq R)$. Let $f : M \to N$ be a homomorphism of R-modules and $p : M \to M/\tau(M)$, $q : N \to N/\tau(N)$ be the canonical projections.

1. There is a unique homomorphism $f_* : M/\tau(M) \to N/\tau(N)$ such that $f_*p = qf$.
2. If f is w-injective, then f_* is injective, and if f is w-isomorphic, then so is f_*.
3. If f is w-isomorphic and M is semi-divisorial, then f_* is an isomorphism.

Proof. (1) The existence of f_* follows from [7, Proposition 2.8] and its uniqueness is clear.

(2) Suppose first that f is w-injective. Since (M) is w-null, we have the following exact sequence

$$0 \to \ker(f) \to f^{-1}(\tau(N)) \to \tau(N).$$

This implies, by Lemma 3.1, that $f^{-1}(\tau(N))$ is w-null; therefore $\tau(M) = f^{-1}(\tau(N))$. Thus f_* must be injective. If, moreover, f is w-surjective, then $\operatorname{coker}(f)$ is w-null. Since the induced homomorphism of $\operatorname{coker}(f)$ to $\operatorname{coker}(f_*)$ is surjective, $\operatorname{coker}(f_*)$ must be w-null.

(3) Suppose that M is semi-divisorial. Then $M \cong \tau(M) \oplus M/\tau(M)$ by [7, Corollary 8.9], and hence $M/\tau(M)$ is also semi-divisorial. Now the assertion follows from [7, Corollary 5.3].

It was shown in [16, Proposition 2.1] that $\operatorname{Hom}_R(M, N) = \operatorname{Hom}_R(M_w, N)$ for a torsion-free R-module M and a w-module N. It follows from this result that w, as a functor from the category of all torsion-free R-modules to the category of all w-modules, is a reflector. The following result shows that the functor W is a reflector from the category $\mathcal{F}_e(R)$ to the category $\mathcal{E}_e(R)$. By the R-dual of an R-module M is meant the R-module $M^* = \operatorname{Hom}_R(M, R)$.

Proposition 3.5. Let R be an integral domain and let M, N be R-modules. Let i be the canonical injection of M to $W(M)$. If N is co-semi-divisorial, then

$$\operatorname{Hom}_R(i, W(N)) : \operatorname{Hom}_R(W(M), W(N)) \to \operatorname{Hom}_R(M, W(N))$$

is an isomorphism. In particular, we have $M^* = (W(M))^*$.

Proof. Since N is co-semi-divisorial, so is $W(N)$ by [7, Proposition 2.9]. On the other hand, $W(M)/M$ is w-null by the definition of a semi-divisorial envelope W. Therefore $\operatorname{Hom}(W(M)/M, W(N)) = 0$, which implies that $\operatorname{Hom}_R(i, W(N))$ is an injection. By [7, Proposition 3.2], we can see that $\operatorname{Hom}_R(i, W(N))$ is a surjection. □
Corollary 3.6. Let R be a pseudo-t-linkative domain with quotient field $K(\neq R)$. Let $f : M \to N$ be a homomorphism of R-modules. Then there exists a unique homomorphism $T(f) : T(M) \to T(N)$ such that $T(f)i = jf$, where i (resp., f) is the canonical homomorphism of M (resp., N) to $T(M)$ (resp., $T(N)$). Moreover, if f is a w-isomorphism, then $T(f)$ is an isomorphism.

Proof. The homomorphism f induces the homomorphism f_* of $M/\tau(M)$ to $N/\tau(N)$ by Proposition 3.4. Applying Proposition 3.5 to f_*, we can obtain a homomorphism $T(f) : T(M) \to T(N)$ such that $T(f)i = jf$.

It is easy to show that, similarly to the proof of Proposition 3.5, $\text{Hom}(i,T(N))$ is an injection. This shows the uniqueness of $T(f)$.

Suppose now that f is a w-isomorphism. Then by Proposition 3.4, f_* is a w-isomorphism (f_* is necessarily injective). Since the canonical injection of $M/\tau(M)$ to $T(M)$ is an essential extension, $T(f)$ must be an injection. Since both f_* and the canonical injection of $N/\tau(N)$ to $T(N)$ are w-surjective, so is the composition of them by Lemma 3.2. We can conclude from this fact that $T(f)$ is a w-surjection. Since a w-isomorphism of co-semi-divisorial and semi-divisorial modules is an isomorphism by [7, Corollary 5.3], $T(f)$ must be an isomorphism.

□

It was shown in [16, Proposition 2.3] that $(\text{Hom}_R(M,N))_w = \text{Hom}_R(M,N_w)$ for a torsion-free finitely generated R-module M and a torsion-free R-module N. As a corollary, Wang obtained that $(\text{End}_R(M))_w = \text{End}_R(M_w)$ for a torsion-free finitely generated R-module M ([16, Corollary 2.4]).

Theorem 3.7. Let R be a pseudo-t-linkative domain. Let M and N be co-semi-divisorial R-modules. If M is a submodule of a finitely generated R-module L, then we have

\[W(\text{Hom}_R(M,N)) \cong \text{Hom}_R(W(M),W(N)). \]

Proof. By Proposition 3.5, we have only to prove

\[W(\text{Hom}_R(M,N)) \cong \text{Hom}_R(M,W(N)). \]

Consider the following exact sequence

\[0 \to \text{Hom}_R(M,N) \to \text{Hom}_R(M,W(N)) \to \text{Hom}_R(M,W(N)/N). \]

Since N is co-semi-divisorial, so is $W(N)$; thus, by Proposition 2.3, $\text{Hom}_R(M,N)$ and $\text{Hom}_R(M,W(N))$ are co-semi-divisorial. Also we have that $\text{Hom}_R(M,W(N))$ is semi-divisorial by Theorem 2.6. Since a w-isomorphism of co-semi-divisorial modules is an essential extension, it suffices to show that $\text{Hom}_R(M,W(N)/N)$ is w-null.

In general, for a submodule M_2 of the finitely generated R-module M_2 and a w-null R-module N_1, we will show that $\text{Hom}_R(M_1,N_1)$ is w-null. Set $N_2 := E(N_1)$. Then N_2 is w-null by [7, Theorem 8.1], since R is pseudo-t-linkative. Let $\{x_1, \ldots, x_n\}$ be a system of generators of M_2 and let $f \in \text{Hom}_R(M_2,N_2)$. Then $\mathcal{O}(f) = \mathcal{O}(f(x_1)) \cap \cdots \cap \mathcal{O}(f(x_n))$. Since each $(\mathcal{O}(f(x_i)))_w = R$, we
have \((\mathcal{O}(f))_w = R\) by the distributivity of the star-operation \(w\) over finite intersection. Hence \(\text{Hom}_R(M_2, N_2)\) is \(w\)-null. Therefore, \(\text{Hom}_R(M_1, N_2)\) is \(w\)-null, since it is a homomorphic image of \(\text{Hom}_R(M_2, N_2)\). Thus \(\text{Hom}_R(M_1, N_1)\) is \(w\)-null since it is isomorphic to a submodule of \(\text{Hom}_R(M_1, N_2)\).

Corollary 3.8. Let \(R\) be a pseudo-\(t\)-linkative domain with quotient field \(K(\neq R)\) and let \(M\) and \(N\) be co-semi-divisorial and semi-divisorial \(R\)-modules. If \(M\) is a submodule of a finitely generated \(R\)-module, then \(\text{Hom}_R(M, N)\) is semi-divisorial.

Let \(M\) and \(N\) be an \(R\)-modules. We say that \(M\) is semi-divisorially equivalent to \(N\) if there exists a \(w\)-isomorphism of \(W(M)\) to \(W(N)\).

Proposition 3.9. Let \(R\) be a pseudo-\(t\)-linkative domain with quotient field \(K(\neq R)\). Let \(M\) and \(N\) be \(R\)-modules.

1. \(M\) is semi-divisorially equivalent to \(N\) if and only if \(W(M/\tau(M))\) is isomorphic to \(W(N/\tau(N))\). In particular, the “semi-divisorial equivalence” is an equivalence relation.

2. If \(M\) is \(w\)-isomorphic to \(N\), then \(M\) is semi-divisorially equivalent to \(N\).

Proof. (1) The necessity follows from the facts that \(W(M) \cong W(\tau(M)) \oplus W(M/\tau(M))\) and \(W(N) \cong W(\tau(N)) \oplus W(N/\tau(N))\) by [7, Corollary 8.9] and \(W(\tau(M))\) and \(W(\tau(N))\) are \(w\)-null by [7, Theorem 8.1] since \(R\) is pseudo-\(t\)-linkative. The sufficiency follows from Proposition 3.4.

2. The assertion follows immediately from Corollary 3.6. \(\square\)

4. Injective cogenerator of a quotient category

In this section, we generalize some results of \([1, 11]\) related to an injective cogenerator in a quotient category. We recall from \([4]\) that a domain \(R\) is said to be an \(H\)-domain if every ideal \(I\) of \(R\) with \(I^{-1} = R\) is quasi-finite (i.e. \(I^{-1} = J^{-1}\) for some finitely generated subideal \(J\) of \(I\)).

Theorem 4.1. Let \(R\) be an \(H\)-domain with quotient field \(K(\neq R)\), and let \(M\) be any \(R\)-module. Then \(M\) is \(w\)-null if and only if \(\text{Hom}_R(M, E(K/R)) = 0\).

Proof. (\(\Rightarrow\)): This follows from Proposition 2.1 since \(E(K/R)\) is co-semi-divisorial by [7, Corollary 2.11].

(\(\Leftarrow\)): Suppose that \(M\) is not \(w\)-null and let \(N = M/\tau(M)\). By Proposition 2.1 and [7, Proposition 2.8], there is a non-zero element of \(x \in N\) such that \(\mathcal{O}(x)\) is a proper \(w\)-ideal and hence \(R : \mathcal{O}(x) \nsubseteq R\) (since \(R\) is an \(H\)-domain). Let \(a \in R : \mathcal{O}(x) \setminus R\). Then \(R :_R a \supset \mathcal{O}(x)\). Let \(f : R \rightarrow K/R\) be the homomorphism defined by \(f(b) = ab\), where \(ab\) is the class of \(ab\) in \(K/R\). Since \(\ker(f) = R :_R a \supset \mathcal{O}(x)\), there is a non-zero homomorphism \(g : R/\mathcal{O}(x) \rightarrow K/R\) such that \(f = gp\), where \(p\) is the canonical projection of \(R\) to \(R/\mathcal{O}(x)\). Let \(i\) be the canonical injection of \(R/\mathcal{O}(x)(\cong Rx)\) to \(N\). Then there is a non-zero homomorphism \(h\) of \(N\) to \(E(K/R)\) such that \(ih = hj\), and hence \(hq\) is a
non-zero homomorphism of M to $E(K/R)$, where q is the canonical projection of M to N. \hfill \Box

Since $K/R \in \mathcal{T}_e(R)$, i.e., K/R has no subobject other than zero belonging to $\mathcal{T}_e(R)$, then $T(E(K/R))$ is the injective envelope of the object $T(K/R)$ of $\Mod(R)/\mathcal{T}_e(R)$.

Corollary 4.2. If R is an H-domain, then $T(E(K/R))$ is an injective cogenerator in the quotient category $\Mod(R)/\mathcal{T}_e(R)$. Hence every co-semi-divisorial and semi-divisorial module over an H-domain can be embedded in an injective module.

Proof. Let $T(N) \in \Mod(R)/\mathcal{T}_e(R)$ with $\Hom_{\Mod(R)/\mathcal{T}_e(R)}(T(N), T(E(K/R))) = 0$. Then by [11, Lemma 2.6] we have $\Hom_{\Mod(R)}(N, E(K/R)) = 0$, and by Theorem 4.1 we have $N \in \mathcal{T}_e(R)$, and then $T(N) = 0$. It is clearly seen that $T(E(K/R))$ is a cogenerator object of $\Mod(R)/\mathcal{T}_e(R)$. The last assertion follows from [14, Proposition I.6.6]. \hfill \Box

Lemma 4.3. Let R be an integral domain, let $P \in w\text{-Max}(R)$, let M be a co-semi-divisorial R-module and let $f : R/P \to M$ a homomorphism. Then either $f \equiv 0$ or f is injective.

Proof. Suppose that $f \neq 0$ and let $f(1) = x$. Then we have $x \in M$. Since M is co-semi-divisorial, then $\mathcal{O}(x)$ is a w-ideal, and since $x \neq 0$, there exists $Q \in w\text{-Max}(R)$ such that $\mathcal{O}(x) \subset Q$, but since $P \subset \mathcal{O}(x)$, we have $P \subset Q$ and hence $P = Q$, so $\mathcal{O}(x) = P$ and f is injective. \hfill \Box

We recall from [10, III.1.4] two facts related to $\mathcal{C}_e(R)$, $\Mod(R)/\mathcal{T}_e(R)$, and T.

(a) The subcategory $\mathcal{C}_e(R)$ of $\Mod(R)$ may be identified with $\Mod(R)/\mathcal{T}_e(R)$.

(b) Let M be an R-module. Then $T(M) = W(M/\tau(M))$.

Therefore, we have that $T(E(K/R)) = W(E(K/R)/\tau(E(K/R))) \cong E(K/R)$.

Theorem 4.4. Let R be an integral domain with quotient field K satisfying $(R:v)_v = (R:v)_x$ for every $x \in K$. If $T(E(K/R))$ is an injective cogenerator in the quotient category $\Mod(R)/\mathcal{T}_e(R)$, then R is an H-domain.

Proof. Note that if R satisfies that $(R:v)_v = (R:v)_x$ for every $x \in K$, then K/R is co-divisorial. Suppose that R is not an H-domain. Then by [17, Proposition 5.7] there exists a prime ideal P which is w-maximal but not a v-ideal. First we show that the module R/P can not be injected in $E(K/R)$. If this were not so, then the kernel of the composition $R \xrightarrow{\Pi} R/P \to E(R/K)$ is P, where Π is the canonical projection. Then by [1, Corollary 1.7] P is a v-ideal, which is a contradiction. Thus by Lemma 4.3, $\Hom_{\Mod(R)}(R/P, E(K/R)) \neq 0$. So $\Hom_{\Mod(R)/\mathcal{T}_e(R)}(T(R/P), T(E(K/R))) \cong \Hom_{\Mod(R)}(W(R/P), E(K/R)) \cong \Hom_{\Mod(R)}(R/P, E(K/R)) = 0$ (note that the last isomorphism follows from Proposition 3.5). Since $T(E(K/R))$ is a cogenerator object in $\Mod(R)/\mathcal{T}_e(R)$,
374 HWANKOO KIM

\[T(R/P) = 0, \text{ and thus } R/P \in \mathcal{T}_r(R), \text{ i.e., } R/P \text{ is } w\text{-null. Hence } P_w = R, \text{ which is a contradiction. Therefore } R \text{ is an } H\text{-domain.} \]

It is well known that if \(R \) is a completely integrally closed domain, then \(R \) satisfies the hypothesis of Theorem 4.4. Now the following result follows from Corollary 4.2, Theorem 4.4, and the fact that an integral domain \(R \) is a Krull domain if and only if \(R \) is a completely integrally closed H-domain ([4, 3.2(d)]).

Corollary 4.5. Let \(R \) be a completely integrally closed domain. Then \(R \) is a Krull domain if and only if \(E(K/R) \) is an injective cogenerator in the quotient category \(\text{Mod}(R)/\mathcal{T}_r(R) \).

Let \(M \) be any \(R \)-module. We have a canonical mapping:

\[\lambda_M : M \to \text{Hom}_R(\text{Hom}_R(M, E(K/R)), E(K/R)). \]

Let \(f \in \text{Hom}_R(M, E(K/R)) \). Then define \(\lambda_M(f) \) by the equation \(\lambda_M(m)(f) = f(m) \) for all \(m \in M \).

Theorem 4.6. Let \(R \) be an \(H \)-domain with quotient field \(K(\neq R) \), and let \(M \) be any \(R \)-module. Then \(M \) is co-semi-divisorial if and only if \(\lambda_M \) is injective.

Proof. (\(\Leftarrow \)): This follows from the facts that \(E(K/R) \) is co-semi-divisorial and \(\text{Hom}_R(L, N) \) is co-semi-divisorial whenever \(N \) is co-divisorial.

(\(\Rightarrow \)): Let \(x \in M \setminus \{0\} \). Since \(Rx \) is not \(w \)-null, we can find a homomorphism \(f : Rx \to E(K/R) \) such that \(f(x) \neq 0 \) by Theorem 4.1. Since \(E(K/R) \) is injective, we can lift \(f \) to a mapping \(\tilde{f} : M \to E(K/R) \). This shows that \(\lambda_M \) is injective, since \(\lambda_M(x)(\tilde{f}) = f(x) = f(x) \neq 0 \) and hence \(\lambda_M(x) \neq 0 \). \(\square \)

References

Department of Information Security
Hoseo University
Asan 336-795, Korea
E-mail address: hkkim@hoseo.edu