CONTINUITY FOR MULTILINEAR INTEGRAL OPERATORS
ON BESOV SPACES

LIU LANZHE
CONTINUITY FOR MULTILINEAR INTEGRAL OPERATORS
ON BESOV SPACES

LIU LANZHE

Abstract. The continuity for the multilinear operators associated to some non-convolution type integral operators on Besov spaces are obtained. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.

1. Introduction

As the development of the singular integral operators, their commutators and multilinear operators have been well studied (see [1-7]). From [2], [7], [13], [15] and [18], we know that the commutators and multilinear operators generated by the singular integral operators and the Lipschitz functions are bounded on the Triebel-Lizorkin and Lebesgue spaces. The purpose of this paper is to introduce some multilinear operators associated to certain non-convolution type integral operators and prove the continuity properties for the multilinear operators on the Besov spaces. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.

2. Preliminaries and Theorem

In this paper, we will study a class of multilinear operators associated to some non-convolution type integral operators as following.

Let m_j be the positive integers $(j = 1, \ldots, l)$, $m_1 + \cdots + m_l = m$ and A_j be the functions on \mathbb{R}^n $(j = 1, \ldots, l)$. Set

$$R_{m_j+1}(A_j; x, y) = A_j(x) - \sum_{|\gamma| \leq m_j} \frac{1}{\gamma!} D^\gamma A_j(y)(x - y)^\gamma.$$

Let $F_t(x, y)$ define on $\mathbb{R}^n \times \mathbb{R}^n \times [0, +\infty)$. Set

$$F_t(f)(x) = \int_{\mathbb{R}^n} F_t(x, y) f(y) dy.$$
and
\[F_t^A(f)(x) = \int_{\mathbb{R}^n} \prod_{j=1}^m Q_{m_j+1}(A_j; x, y) F_t(x, y) f(y) dy \]
for every bounded and compactly supported function \(f \). Let \(H \) be the Banach space \(H = \{ h : ||h|| < \infty \} \) such that, for each fixed \(x \in \mathbb{R}^n \), \(F_t(f)(x) \) and \(F_t^A(f)(x) \) may be viewed as a mapping from \([0, +\infty)\) to \(H \). Then, the multilinear operator associated to \(F_t \) is defined by
\[T^A(f)(x) = ||F_t^A(f)(x)||, \]
where \(F_t \) satisfies: for fixed \(\varepsilon > 0 \) and \(0 \leq \delta < n - 1 \),
\[||F_t(x, y)|| \leq C|x - y|^{-n+\delta} \]
and
\[||F_t^1(y, x) - F_t^1(z, x)|| \leq C|y - z|^\varepsilon |x - z|^{-n-\varepsilon+\delta} \]
if \(2|y - z| \leq |x - z| \). We define \(T(f)(x) = ||F_t(f)(x)|| \).

Note that when \(m = 0 \), \(T^A \) is just the multilinear commutator of \(T \) and \(A \) (see [8-13], [21]). While when \(m > 0 \), it is non-trivial generalizations of the commutators. It is well known that multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors (see [2-6]). The purpose of this paper is to study the boundedness properties for the multilinear operator \(T^A \) on Besov spaces. In Section 4, some applications of Theorem in this paper are given.

First, let us introduce some notations. Throughout this paper, \(Q \) will denote a cube of \(\mathbb{R}^n \) with sides parallel to the axes. For a locally integrable function \(f \), the sharp function of \(f \) is defined by
\[f^\#(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y) - f_Q| dy, \]
where, and in what follows, \(f_Q = |Q|^{-1} \int_Q f(x) dx \). It is well-known that (see [14], [15])
\[f^\#(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y) - c| dy. \]

For \(\beta \geq 0 \), the Besov space \(\dot{\lambda}_\beta \) is the space of functions \(f \) such that
\[||f||_{\dot{\lambda}_\beta} = \sup_{x, h \in \mathbb{R}^n \atop h \neq 0} \left| \Delta_h^{[\beta+1]} f(x) \right| / ||h||^\beta < \infty, \]
where \(\Delta_h^k \) denotes the \(k \)-th difference operator (see [18]).

Definition 1. Let \(0 < p, q \leq \infty, \alpha \in \mathbb{R} \). For \(k \in \mathbb{Z} \), set \(B_k = \{ x \in \mathbb{R}^n : |x| \leq 2^k \} \) and \(C_k = B_k \setminus B_{k-1} \). Denote by \(\chi_k \) the characteristic function of \(C_k \) and \(\chi_0 \) the characteristic function of \(B_0 \).

1. The homogeneous Herz space is defined by
\[\dot{K}^p_q = \{ f \in L^q_{loc}(\mathbb{R}^n \setminus \{0\}) : ||f||_{\dot{K}^p_q} < \infty \}, \]
Theorem 2. \(0 \leq \eta < n\) and \(j\) bounded from \(L_{\alpha, q}(R^n)\) to \(L^\infty(R^n)\) for any \(n/(\beta + \delta) \leq p \leq n/\delta\).

Theorem 2. Let \(0 < \beta < \min(1/\varepsilon/l, 1/q_2 = 1/q_1 - (l\beta + \delta)/n, \max(-n/q_2 - 1, -n/q_2 - \varepsilon) < \alpha \leq -n/q_2\) and \(D\gamma A_j \in \hat{\Lambda}_\beta\) for all \(\gamma\) with \(|\gamma| = m_j\) and \(j = 1, \ldots, l\). Suppose that \(T^A\) is bounded from \(L^\infty(R^n)\) to \(L^\infty(R^n)\) for any \(0 \leq \eta < n\), \(1 < r < n/\eta\) and \(1/r - 1/s = \eta/n\). Then \(T^A\) is bounded from \(K_{q_1}^{\alpha, p}(R^n)\) to \(CL_{\alpha, q}(R^n)\).

Remark. Theorem 4 also hold for the nonhomogeneous Herz type Hardy space.

3. Proofs of Theorems

To prove the theorems, we need the following lemmas.

Lemma 1 (see [18]). For \(0 < \beta < 1, 1 \leq p \leq \infty\), we have
\[
\|b\|_{\hat{\Lambda}_\beta} \approx \sup_Q \frac{1}{|Q|^{1+\beta/n}} \int_Q |b(x) - b_Q| dx \approx \sup_Q \frac{1}{|Q|^{1/2}} \left(\frac{1}{|Q|} \int_Q |b(x) - b_Q|^p dx \right)^{1/p}
\]
\[
\approx \sup_Q \inf_Q \frac{1}{|Q|^{1+\beta/n}} \int_Q |b(x) - c| dx \approx \sup_Q \inf_Q \frac{1}{|Q|^{1/2}} \left(\frac{1}{|Q|} \int_Q |b(x) - c|^p dx \right)^{1/p}.
\]
Lemma 2 (see [5]). Let \(A \) be a function on \(\mathbb{R}^n \) and \(D^\gamma A \in L^q(\mathbb{R}^n) \) for \(|\gamma| = m \) and some \(q > n \). Then
\[
|R_m(A; x, y)| \leq C|x - y|^m \sum_{|\gamma| = m} \left(\frac{1}{Q(x, y)} \int_{Q(x, y)} |D^\gamma A(z)|^q dz \right)^{1/q},
\]
where \(Q(x, y) \) is the cube centered at \(x \) and having side length \(5\sqrt{n}|x - y| \).

Lemma 3 (see [17]). For \(\alpha < 0, 0 < q < \infty \), we have
\[
||f||_{K^\alpha_q} \approx \sup_{\mu \in \mathbb{Z}} 2^{\mu\alpha} ||f \chi_{B_\mu}||_{L^q}.
\]

Proof of Theorem 1. Without loss of generality, we may assume \(l = 2 \). By Lemma 1, it is only to prove that there exists a constant \(C_0 \) such that
\[
\frac{1}{|Q|^{1+(2\beta+\delta)/n-1/p}} \int_Q |T^A(f)(x) - C_0| dx \leq C||f||_{L^p}.
\]
Fix a cube \(Q = Q(x_0, d) \). Let \(\tilde{Q} = 5\sqrt{n}Q \) and
\[
\tilde{A}_j(x) = A_j(x) - \sum_{|\gamma| = m} \frac{1}{|\gamma|!} (D^\gamma A_j)_{\tilde{Q}} x^\gamma.
\]
Then \(R_m(A_j; x, y) = R_m(\tilde{A}_j; x, y) \) and \(D^\gamma \tilde{A}_j = D^\gamma A_j - (D^n A_j)_{\tilde{Q}} \) for \(|\gamma| = m_j \).

We write, for \(f_1 = f \chi_{\tilde{Q}} \) and \(f_2 = f \chi_{\mathbb{R}^n \setminus \tilde{Q}} \),
\[
F^A_i(f)(x) = \int_{\mathbb{R}^n} \prod_{j=1}^2 R_{m_j+1}(\tilde{A}_j; x, y)_{\tilde{Q}} f_i(x, y) f(y) dy
\]

\[
= \int_{\mathbb{R}^n} \prod_{j=1}^2 R_{m_j+1}(\tilde{A}_j; x, y)_{\tilde{Q}} f_i(x, y) f_2(y) dy
\]

\[
+ \int_{\mathbb{R}^n} \prod_{j=1}^2 R_{m_j}(\tilde{A}_j; x, y)_{\tilde{Q}} f_i(x, y) f_1(y) dy
\]

\[
- \sum_{|\gamma_1| = m_1} \frac{1}{\gamma_1!} \int_{\mathbb{R}^n} R_{m_2}(\tilde{A}_2; x, y)(x - y)^{\gamma_1} D^{\gamma_1} \tilde{A}_1(x) f_i(x, y) f_1(y) dy
\]

\[
- \sum_{|\gamma_2| = m_2} \frac{1}{\gamma_2!} \int_{\mathbb{R}^n} R_{m_1}(\tilde{A}_1; x, y)(x - y)^{\gamma_2} D^{\gamma_2} \tilde{A}_2(x) f_i(x, y) f_1(y) dy
\]

\[
+ \sum_{|\gamma_1| = m_1} \frac{1}{\gamma_1!\gamma_2!} \int_{\mathbb{R}^n} (x - y)^{\gamma_1 + \gamma_2} D^{\gamma_1} \tilde{A}_1(x) D^{\gamma_2} \tilde{A}_2(y) f_i(x, y) f_1(y) dy,
\]
then

\[
\left| T^\Lambda(f)(x) - T^\Lambda(f_2)(x_0) \right| = \left| |F^\Lambda_t(f)(x)| - |F^\Lambda_t(f_2)(x_0)| \right|
\]

\[
\leq \left| |F^\Lambda_t(f)(x)| - |F^\Lambda_t(f_2)(x_0)| \right|
\]

\[
\leq \left\| \int_{R^n} \prod_{j=1}^2 R_{m_j}(\tilde{A}_j; x, y) \left(\sum_{|\gamma_j|=m_j} \frac{1}{\gamma_j!} \int_{R^n} \frac{R_{m_j}(\tilde{A}_j; x, y)(x-y)^{\gamma_j}}{|x-y|^m} D^{\gamma_1} \tilde{A}_1(y) F_1(x, y) f_1(y) dy \right) \right\| dx
\]

\[
+ \left\| \sum_{|\gamma_1|=m_1} \frac{1}{\gamma_1!} \int_{R^n} \frac{R_{m_1}(\tilde{A}_1; x, y)(x-y)^{\gamma_1}}{|x-y|^m} D^{\gamma_1} \tilde{A}_1(y) F_1(x, y) f_1(y) dy \right\| dx
\]

\[
+ \left\| \sum_{|\gamma_2|=m_2} \frac{1}{\gamma_2!} \int_{R^n} \frac{(x-y)^{\gamma_1+\gamma_2} D^{\gamma_1} \tilde{A}_1(y) D^{\gamma_2} \tilde{A}_2(y) F_1(x, y) f_1(y) dy}{|x-y|^m} \right\| dx
\]

Thus

\[
\frac{1}{|Q|^{1+(2\beta+\delta)/n-1/p}} \int_Q \left| T^\Lambda(f)(x) - T^\Lambda(f_2)(x_0) \right| dx
\]

\[
\leq \frac{1}{|Q|^{1+(2\beta+\delta)/n-1/p}} \int_Q \left\| \int_{R^n} \prod_{j=1}^2 R_{m_j}(\tilde{A}_j; x, y) \left(\sum_{|\gamma_j|=m_j} \frac{1}{\gamma_j!} \int_{R^n} \frac{R_{m_j}(\tilde{A}_j; x, y)(x-y)^{\gamma_j}}{|x-y|^m} D^{\gamma_1} \tilde{A}_1(y) F_1(x, y) f_1(y) dy \right) \right\| dx
\]

\[
+ \frac{1}{|Q|^{1+(2\beta+\delta)/n-1/p}} \int_Q \left\| \sum_{|\gamma_1|=m_1} \frac{1}{\gamma_1!} \int_{R^n} \frac{R_{m_1}(\tilde{A}_1; x, y)(x-y)^{\gamma_1}}{|x-y|^m} D^{\gamma_1} \tilde{A}_1(y) F_1(x, y) f_1(y) dy \right\| dx
\]

\[
+ \frac{1}{|Q|^{1+(2\beta+\delta)/n-1/p}} \int_Q \left\| \sum_{|\gamma_2|=m_2} \frac{1}{\gamma_2!} \int_{R^n} \frac{(x-y)^{\gamma_1+\gamma_2} D^{\gamma_1} \tilde{A}_1(y) D^{\gamma_2} \tilde{A}_2(y) F_1(x, y) f_1(y) dy}{|x-y|^m} \right\| dx
\]
\[
\times \int_Q \left| \sum_{|\gamma_1| = m_1} \int_{R^n} \frac{(x - y)^{\gamma_1 + \gamma_2} D^{\gamma_1} A_1(y) D^{\gamma_2} A_2(y)}{|x - y|^n} F_i(x, y) f_1(y) dy \right| dx \\
+ \frac{1}{|Q|^{1+\delta/n-1/p}} \int_Q \left| T^{\tilde{A}}(f_2)(x) - T^{\tilde{A}}(f_2)(x_0) \right| dx
\]

\[:= I_1 + I_2 + I_3 + I_4 + I_5.\]

Now, let us estimate \(I_1, I_2, I_3, I_4 \) and \(I_5 \), respectively. First, by Lemma 5 and Lemma 2, we get, for \(x \in Q \) and \(y \in Q \),

\[
|R_m(\tilde{A}; x, y)| \\
\leq C|x - y|^m \sum_{|\gamma| = m} \sup_{x \in Q} |D^{\gamma} A_j(x) - (D^{\gamma} A_j)_Q| \\
\leq C|x - y|^m |Q|^{2/n} \sum_{|\gamma| = m} \|D^{\gamma} A_j\|_{L^p},
\]

thus, by the \((L^r, L^s)\)-boundedness of \(T \) with \(1 < r < p \leq n/\delta \) and \(1/s = 1/r - \delta/n \), we obtain, using Hölder’s inequality,

\[
I_1 \leq C \prod_{j=1}^2 \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{L^p} \right) \frac{1}{|Q|^{1+\delta/n-1/p}} \int_Q |T(f_1)(x)| dx \\
\leq C \prod_{j=1}^2 \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{L^p} \right) \frac{|Q|^{1-1/s}}{|Q|^{1+\delta/n-1/p}} \left(\int_Q |T(f_1)(x)|^s dx \right)^{1/s} \\
\leq C \prod_{j=1}^2 \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{L^p} \right) \frac{|Q|^{1-1/s}}{|Q|^{1+\delta/n-1/p}} \left(\int_Q |f(x)|^r dx \right)^{1/r} \\
\leq C \prod_{j=1}^2 \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{L^p} \right) \frac{|Q|^{1-1/s}}{|Q|^{1+\delta/n-1/p}} \|f\|_{L^p} |Q|^{1/r-1/p} \\
\leq C \prod_{j=1}^2 \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{L^p} \right) \|f\|_{L^p}.
\]

For \(I_2 \), using Hölder’s inequality, we get, for \(1 < r < p \leq n/\delta \) and \(1/s = 1/r - \delta/n \),

\[
I_2 \leq C \sum_{|\gamma_2| = m_2} \|D^{\gamma_2} A_2\|_{L^p} \sum_{|\gamma_1| = m_1} \frac{1}{|Q|^{1+\delta/\gamma_1/n-1/p}} \int_Q |T(D^{\gamma_1} A_1 f_1)(x)| dx \\
\leq C \sum_{|\gamma_2| = m_2} \|D^{\gamma_2} A_2\|_{L^p}
\]
\[\times \sum_{|\gamma| = m_1} \frac{|Q|^{1-1/s}}{|Q|^{1+(3+\delta)/n-1/p}} \left(\int_Q |T(D^{\gamma_1} A - (D^{\gamma_1} A)_{Q}) f_1(x)|^s dx \right)^{1/s} \]

\[\leq C \sum_{|\gamma_2| = m_2} \|D^{\gamma_2} A_2\|_{\lambda, \beta} \]

\[\times \sum_{|\gamma_1| = m_1} \frac{|Q|^{1-1/s}}{|Q|^{1+(3+\delta)/n-1/p}} \left(\int_{R^n} |(D^{\gamma_1} A(x) - (D^{\gamma_1} A)_{Q}) f_1(x)|^r dx \right)^{1/r} \]

\[\leq C \prod_{j=1}^2 \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{\lambda, \alpha} \right) \frac{|Q|^{1-1/s}}{|Q|^{1+(3+\delta)/n-1/p}} \left(\int_Q |f(x)|^r dx \right)^{1/r} \]

\[\leq C \prod_{j=1}^2 \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{\lambda, \alpha} \right) \|f\|_{L^r} |Q|^{1/r-1/p} \]

\[\leq C \prod_{j=1}^2 \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{\lambda, \alpha} \right) \|f\|_{L^p}. \]

For \(I_3 \), similar to the proof of \(I_2 \), we get

\[I_3 \leq C \prod_{j=1}^2 \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{\lambda, \alpha} \right) \|f\|_{L^p}. \]

Similarly, for \(I_4 \), we obtain, for \(1 < r < p \leq n/\delta \) and \(1/s = 1/r - \delta/n \),

\[I_4 \]

\[\leq C \sum_{|\gamma_1| = m_1} \frac{1}{|Q|^{1+(3+\delta)/n-1/p}} \int_Q |T(D^{\gamma_1} \tilde{A}_1 D^{\gamma_2} \tilde{A}_2 f_1)(x)| dx \]

\[\leq C \sum_{|\gamma_2| = m_2} \frac{|Q|^{1-1/s}}{|Q|^{1+(3+\delta)/n-1/p}} \left(\int_{R^n} |T(D^{\gamma_1} \tilde{A}_1 D^{\gamma_2} \tilde{A}_2 f_1(x)|^s dx \right)^{1/s} \]

\[\leq C \sum_{|\gamma_1| = m_1} \frac{|Q|^{1-1/s}}{|Q|^{1+(3+\delta)/n-1/p}} \left(\int_{R^n} |D^{\gamma_1} \tilde{A}_1(x) D^{\gamma_2} \tilde{A}_2 f_1(x)|^r dx \right)^{1/r} \]

\[\leq C \prod_{j=1}^2 \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{\lambda, \alpha} \right) \frac{|Q|^{1-1/s}}{|Q|^{1+(3+\delta)/n-1/p}} \left(\int_Q |f(x)|^r dx \right)^{1/r} \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma_j|=m_j} \|D^{\gamma_j} A_j\|_{\lambda, \beta} \right) \frac{|Q|^{1-\delta}}{|Q|^{1+d/n-1/p}} \|f\|_{L^p} |Q|^{1/r-1/p} \]

For \(I_5 \), we write

\[
F_t^A(f_2)(x) - F_t^A(f_2)(x_0)
= \int_{R^n} \left(F_t(x, y) - F_t(x_0, y) \right) \prod_{j=1}^{2} R_m, (\tilde{A}_j; x, y) f_2(y) dy
+ \int_{R^n} \left(R_m, (\tilde{A}_1; x, y) - R_m, (\tilde{A}_1; x_0, y) \right) \frac{R_m, (\tilde{A}_2; x, y)}{|x_0 - y|^m} F_t(x_0, y) f_2(y) dy
+ \int_{R^n} \left(R_m, (\tilde{A}_2; x, y) - R_m, (\tilde{A}_2; x_0, y) \right) \frac{R_m, (\tilde{A}_1; x_0, y)}{|x_0 - y|^m} F_t(x_0, y) f_2(y) dy
- \sum_{|\gamma_1|=m_1} \frac{1}{\gamma_1!} \int_{R^n} \left[R_m, (\tilde{A}_2; x, y)(x-y)^{\gamma_1} \frac{F_t(x, y)}{|x-y|^m} - \frac{R_m, (\tilde{A}_2; x_0, y)(x-y)^{\gamma_1}}{|x_0-y|^m} F_t(x_0, y) \right] \times D^{\gamma_1} \tilde{A}_1(y) f_2(y) dy
- \sum_{|\gamma_2|=m_2} \frac{1}{\gamma_2!} \int_{R^n} \left[R_m, (\tilde{A}_1; x, y)(x-y)^{\gamma_2} \frac{F_t(x, y)}{|x-y|^m} - \frac{R_m, (\tilde{A}_1; x_0, y)(x_0-y)^{\gamma_2}}{|x_0-y|^m} F_t(x_0, y) \right] \times D^{\gamma_2} \tilde{A}_2(y) f_2(y) dy
+ \sum_{|\gamma_1|=m_1} \frac{1}{\gamma_1! \gamma_2!} \int_{R^n} \left[(x-y)^{\gamma_1+\gamma_2} \frac{F_t(x, y)}{|x-y|^m} - \frac{(x_0-y)^{\gamma_1+\gamma_2}}{|x_0-y|^m} F_t(x_0, y) \right] \times D^{\gamma_1} \tilde{A}_1(y) D^{\gamma_2} \tilde{A}_2(y) f_2(y) dy
= I_5^{(1)} + I_5^{(2)} + I_5^{(3)} + I_5^{(4)} + I_5^{(5)} + I_5^{(6)}.
\]

By the following inequality, for \(b \in \lambda, \beta \),

\[|b(x) - b_Q| \leq \frac{1}{|Q|} \int_Q \|b\|_{\lambda, \beta} |x-y|^\beta dy \leq \|b\|_{\lambda, \beta} (|x-x_0| + d)^\beta, \]
we get
\[|R_{m_j}(\tilde{A}_j; x, y)| \leq \sum_{|\gamma|=m_j} ||D^{\gamma}A_j||_{\lambda_\alpha} (|x - y| + d)^{m_j + \beta}. \]

Note that \(|x - y| \sim |x_0 - y|\) for \(x \in Q\) and \(y \in \mathbb{R}^n \setminus \tilde{Q}\), we obtain, by the condition of \(F_k\),
\[
||f_{1(1)}|| \leq C \int_{\mathbb{R}^n \setminus \tilde{Q}} \left(\frac{|x - x_0|}{|x_0 - y|^{m+n+1-\delta}} + \frac{|x - x_0|^{\varepsilon}}{|x_0 - y|^{m+n+\varepsilon-\sigma}} \right)^2 \prod_{j=1}^{2} |R_{m_j}(\tilde{A}_j; x, y)||f(y)|dy
\]
\[
\leq C \sum_{j=1}^{2} \left(\sum_{|\gamma_j|=m_j} ||D^{\gamma_j}A_j||_{\lambda_\alpha} \right) \times \sum_{k=0}^{\infty} \left(\frac{d}{(2k\varepsilon)^{n+1-\delta-2\beta}} + \frac{d^{\varepsilon}}{(2k\varepsilon)^{n+\varepsilon-\delta-2\beta}} \right) \int_{2^k \tilde{Q}} |f(y)|dy
\]
\[
\leq C \sum_{j=1}^{2} \left(\sum_{|\gamma_j|=m_j} ||D^{\gamma_j}A_j||_{\lambda_\alpha} \right) \times \sum_{k=0}^{\infty} \left(2^{k(\delta+2\beta-1-n/p)} + 2^{k(\delta+2\beta-\varepsilon-n/p)} \right) ||f||_{L^p}
\]
\[
\leq C \sum_{j=1}^{2} \left(\sum_{|\gamma_j|=m_j} ||D^{\gamma_j}A_j||_{\lambda_\alpha} \right) \times \sum_{k=0}^{\infty} \left(2^{k(\delta+2\beta-1-n/p)} + 2^{k(\delta+2\beta-\varepsilon-n/p)} \right) ||f||_{L^p}.
\]

For \(f_{2(1)}^{(2)}\), by the formula (see [5]):
\[
R_{m_j}(\tilde{A}_j; x, y) - R_{m_j}(\tilde{A}_j; x_0, y) = \sum_{|\eta|<m_j} \frac{1}{\eta!} R_{m_j-|\eta|}(D^{\eta}A_j; x, x_0)(x - y)^n
\]
and Lemma 5, we get
\[
||f_{2(1)}^{(2)}|| \leq C \sum_{j=1}^{2} \left(\sum_{|\gamma_j|=m_j} ||D^{\gamma_j}A_j||_{\lambda_\alpha} \right) \sum_{k=0}^{\infty} \int_{2^k \tilde{Q} \setminus 2^{k+1} \tilde{Q}} \frac{|x - x_0|}{|x_0 - y|^{n+1-\delta-2\beta}} |f(y)|dy
\]
$\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma|=m_j} \|D^\gamma A_j\|_{\lambda, \delta} \right) |Q|^{\delta/n + 2\beta/n - 1/p} \|f\|_{L^p}.$

Similarly,

$\|I_5^{(3)}\| \leq C \prod_{j=1}^{2} \left(\sum_{|\gamma|=m_j} \|D^\gamma A_j\|_{\lambda, \delta} \right) |Q|^{\delta/n + 2\beta/n - 1/p} \|f\|_{L^p}.$

For $I_5^{(4)}$, similar to the estimates of $I_5^{(1)}$ and $I_5^{(2)}$, we obtain,

$\|I_5^{(4)}\| \leq C \sum_{|\gamma|=m_1} \int_{R^n \setminus \tilde{Q}} \left\| \frac{(x - y)^{\gamma_1} F_i(x, y)}{|x - y|^m} - \frac{(x_0 - y)^{\gamma_1} F_i(x_0, y)}{|x_0 - y|^m} \right\| dy \times \|R_{m_2}(\tilde{A}_2; x, y)||D^{\gamma_2} \tilde{A}_1(y)||f(y)|dy$

$+ C \sum_{|\gamma|=m_2} \int_{R^n \setminus \tilde{Q}} |R_{m_2}(\tilde{A}_2; x, y) - R_{m_2}(\tilde{A}_2; x_0, y)|$

$\times \left\| \frac{(x_0 - y)^{\gamma_2} F_i(x_0, y)}{|x_0 - y|^m} \right\| \|D^{\gamma_2} \tilde{A}_1(y)||f(y)|dy$

$\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma|=m_j} \|D^\gamma A_j\|_{\lambda, \delta} \right) |Q|^{\delta/n + 2\beta/n - 1/p}$

$\times \sum_{k=0}^{\infty} \left(2^{k(\delta + 2\beta - 1 - n/p)} + 2^{k(\delta + 2\beta - \varepsilon - n/p)} \right) \|f\|_{L^p}$

$\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma|=m_j} \|D^\gamma A_j\|_{\lambda, \delta} \right) |Q|^{\delta/n + 2\beta/n - 1/p} \|f\|_{L^p}.$

Similarly,

$\|I_5^{(5)}\| \leq C \prod_{j=1}^{2} \left(\sum_{|\gamma|=m_j} \|D^\gamma A_j\|_{\lambda, \delta} \right) |Q|^{\delta/n + 2\beta/n - 1/p} \|f\|_{L^p}.$

For $I_5^{(6)}$, we get

$\|I_5^{(6)}\|$

$\leq C \sum_{|\gamma|=m_1,|\gamma_2|=m_2} \int_{R^n \setminus \tilde{Q}} \left\| \frac{(x - y)^{\gamma_1+\gamma_2} F_i(x, y)}{|x - y|^m} - \frac{(x_0 - y)^{\gamma_1+\gamma_2} F_i(x_0, y)}{|x_0 - y|^m} \right\|$

$\times \|D^{\gamma_2} \tilde{A}_1(y)||D^{\gamma_2} \tilde{A}_2(y)||f(y)|dy$
\[\leq C \sum_{|\gamma| = m_1, |\gamma| = m_2} \sum_{k=0}^{\infty} \int_{2^k \mathbb{Q} \setminus 2^{k+1} \mathbb{Q}} \left(\frac{|x-x_0|}{|x_0-y|^{n+1-\delta}} + \frac{|x-x_0|^\varepsilon}{|x_0-y|^{n+\varepsilon-\delta}} \right) |D_{\gamma_1} \tilde{A}_1(y)||D_{\gamma_2} \tilde{A}_2(y)||f(y)|dy \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma| = m_j} ||D_{\gamma_j} A_j||_{\Lambda_\delta} \right) \]
\[\times \sum_{k=0}^{\infty} \int_{2^{k+1} \mathbb{Q} \setminus 2^k \mathbb{Q}} \left(\frac{|x-x_0|}{|x_0-y|^{n+1-2\delta}} + \frac{|x-x_0|^\varepsilon}{|x_0-y|^{n+\varepsilon-2\delta}} \right) |f(y)|dy \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma| = m_j} ||D_{\gamma_j} A_j||_{\Lambda_\delta} \right) |Q|^{\delta/n+2\beta/n-1/p} ||f||_{L^p}. \]

Thus
\[|T^\Lambda (f_2)(x) - T^\Lambda (f_2)(x_0)| \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma| = m_j} ||D_{\gamma_j} A_j||_{\Lambda_\delta} \right) |Q|^{\delta/n+2\beta/n-1/p} ||f||_{L^p}. \]

and
\[I_5 \leq C \prod_{j=1}^{2} \left(\sum_{|\gamma| = m_j} ||D_{\gamma_j} A_j||_{\Lambda_\delta} \right) ||f||_{L^p}. \]

This completes the proof of the theorem. \(\square\)

Proof of Theorem 2. Without loss of generality, we may assume \(l = 2\). Fix a ball \(B = B(0,d)\), there exists \(\mu_0 \in \mathbb{Z}\) such that \(2^\mu_0 - 1 \leq d < 2^\mu_0\). Let \(\tilde{A}_j(x) = A_j(x) - \sum_{|\gamma| = m} \frac{1}{\gamma!} (D^\gamma A_j)_{B_{\rho_0}} x^\gamma\), then \(R_m (A_j; x, y) = R_m (\tilde{A}_j; x, y)\) and \(D^\gamma \tilde{A}_j = D^\gamma A_j - (D^\gamma A_j)_{B_{\rho_0}}\) for \(|\gamma| = m_j\). We choose \(x_0\) such that \(2d < |x_0| < 3d\). It is only to prove that
\[2^{\mu_0(n+n/q_2)} \left(\frac{1}{2^{\mu_0 n}} \int_{|x| \leq 2^\rho_0} |T^A(f)(x) - T^\Lambda (f_2)(x_0)|^{q_2} dx \right)^{1/q_2} \leq C ||f||_{K_{\delta_1}^{\infty}}. \]

We write, for \(f_1 = f \chi_{4B_{\rho_0}}\) and \(f_2 = f \chi_{R^n \setminus 4B_{\rho_0}}\),
\[\left| T^A(f)(x) - T^\Lambda (f_2)(x_0) \right| = \left| ||F^A_t (f)(x)|| - ||F^\Lambda_t (f_2)(x_0)|| \right| \]
\[\leq \left| ||F^A_t (f)(x)|| - ||F^\Lambda_t (f_2)(x_0)|| \right| + \left| T^A(f_1)(x) \right| - \left| T^\Lambda (f_2)(x) - T^\Lambda (f_2)(x_0) \right|. \]
then

\[
2^{\mu_0(\alpha+\eta/q_2)} \left(\frac{1}{2^{\mu_0 n}} \int_{|x| \leq 2^{\mu_0}} \left| T^A(f)(x) - T^\Lambda(f_2)(x_0) \right|^q dx \right)^{1/q_2} \\
\leq 2^{\mu_0(\alpha+\eta/q_2)} \left(\frac{1}{2^{\mu_0 n}} \int_{|x| \leq 2^{\mu_0}} \left| T^\Lambda(f_1)(x) \right|^q dx \right)^{1/q_2} \\
+ 2^{\mu_0(\alpha+\eta/q_2)} \left(\frac{1}{2^{\mu_0 n}} \int_{|x| \leq 2^{\mu_0}} \left| T^\Lambda(f_2)(x) - T^\Lambda(f_2)(x_0) \right|^q dx \right)^{1/q_2} \\
:= J_1 + J_2.
\]

For \(J_1\), by the \((L^{q_1}, L^{q_2})\)-boundedness of \(T^A\) and Lemma 3, we get

\[
J_1 \leq C 2^{\mu_0(\alpha+\eta/q_2)} 2^{-\mu_0 n/q_2} \left(\int_{R^n} |f_1(x)|^{q_1} dx \right)^{1/q_1} \\
\leq C 2^{\mu_0(\alpha)} \|f_X f_0\|_{L^{q_1}} \\
\leq C \|f\|_{K^{\alpha, \infty}}.
\]

For \(J_2\), similar to the estimates of Theorem 1, we obtain, by Hölder’s inequality and recall that \(\max(-\eta/q_2 - 1, -\eta/q_2 - \varepsilon) < \alpha, 1/q_2 = 1/q_1 = (2\beta + \delta)/n\),

\[
|T^\Lambda(f_2)(x) - T^\Lambda(f_2)(x_0)| \\
\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{\Lambda, \rho} \right) \\
\times \sum_{k=1}^{\infty} \left(\frac{2^{\mu_0}}{2(\mu_0 + k)(n + 1 - \delta - 2\beta)} + \frac{2^{\mu_0}}{2(\mu_0 + k)(n + \varepsilon - 2\delta)} \right) \int_{C_{\mu_0 + k}} |f(y)| dy \\
\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{\Lambda, \rho} \right) \\
\times \sum_{k=1}^{\infty} \left(\frac{2^{\mu_0}}{2(\mu_0 + k)(n + 1 - \delta - 2\beta)} + \frac{2^{\mu_0}}{2(\mu_0 + k)(n + \varepsilon - 2\delta)} \right) \|f_X f_0 + k\|_{L^{q_1}} 2^{(\mu_0 + k) n(1 - \frac{\alpha}{n})} \\
\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma_j| = m_j} \|D^{\gamma_j} A_j\|_{\Lambda, \rho} \right) \\
\times \sum_{k=1}^{\infty} \left(\frac{2^{\mu_0}}{2(\mu_0 + k)(1 - \delta - 2\beta)} + \frac{2^{\mu_0}}{2(\mu_0 + k)(\varepsilon - 2\delta)} \right) \frac{2^{(\mu_0 + k)(-\eta/q_1)}}{2^{\alpha(\mu_0 + k)}} \|f\|_{K^{\alpha, \infty}}.
\]
CONTINUITY FOR MULTILINEAR INTEGRAL OPERATORS

\[\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma_j| = m_j} \| D^{\gamma_j} A_j \|_{\lambda, \beta} \right) \]
\[\times \sum_{k=1}^{\infty} \left(2^{k(\delta + 2 \beta - 1 - \alpha - n/q_1)} + 2^{k(\delta + 2 \beta - \varepsilon - \alpha - n/q_1)} \right) 2^{\mu_0(\delta + 2 \beta - \alpha - n/q_1)} \| f \|_{K_{\alpha 1}^\beta} \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma_j| = m_j} \| D^{\gamma_j} A_j \|_{\lambda, \beta} \right) 2^{\mu_0(\delta + 2 \beta - \alpha - n/q_1)} \| f \|_{K_{\alpha 1}^\beta} \]

thus
\[J_2 \leq C \prod_{j=1}^{2} \left(\sum_{|\gamma_j| = m_j} \| D^{\gamma_j} A_j \|_{\lambda, \beta} \right) 2^{\mu_0(\alpha + n/q_2)} 2^{\mu_0(\delta + 2 \beta - \alpha - n/q_1)} \| f \|_{K_{\alpha 1}^\beta} \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\gamma_j| = m_j} \| D^{\gamma_j} A_j \|_{\lambda, \beta} \right) \| f \|_{K_{\alpha 1}^\beta}. \]

This completes the proof of the theorem. \(\square \)

4. Applications

Now we give some applications of results in this paper.

Application 1. Littlewood-Paley operators.

Fixed \(0 \leq \delta < n - 1, \varepsilon > 0 \) and \(\mu > 1 \). Let \(\psi \) be a fixed function which satisfies:

1. \(\int_{R^n} \psi(x)dx = 0 \),
2. \(|\psi(x)| \leq C(1 + |x|)^{-(n+1)} \),
3. \(|\psi(x + y) - \psi(x)| \leq C|y|^\delta (1 + |x|)^{-(n+1+\varepsilon)} \) when \(2|y| < |x| \).

We denote \(\Gamma(x) = \{(y, t) \in R^{n+1} : |x - y| < t\} \) and the characteristic function of \(\Gamma(x) \) by \(\chi_{\Gamma(x)} \). The Littlewood-Paley multilinear operators are defined by

\[g^A_{\mu}(f)(x) = \left(\int_0^{\infty} |F_t^A(f)(x)|^2 \frac{dt}{t} \right)^{1/2} \],
\[S^A_{\psi}(f)(x) = \left[\int_{\Gamma(x)} |F_t^A(f)(x, y)|^2 \frac{dydt}{t^{n+1}} \right]^{1/2} \]

and

\[g^A_{\mu}(f)(x) = \left[\int_{R^{n+1}} \left(\frac{t}{t + |x - y|} \right)^{n\mu} |F_t^A(f)(x, y)|^2 \frac{dydt}{t^{n+1}} \right]^{1/2} \],

where

\[F_t^A(f)(x) = \int_{R^n} \prod_{j=1}^{l} R_{m_j+1}^{t}(A_j; x, y) \frac{\psi_t(x - y)f(y)dy}{|x - y|^m}. \]
\[F_t^A(f)(x, y) = \int_{\mathbb{R}^n} \prod_{j=1}^n R_{m_j+1}(A_j; x, z) f(z) \psi_t(y - z) dz \]

and \(\psi_t(x) = t^{-n+\delta} \psi(x/t) \) for \(t > 0 \). Set \(F_t(f)(y) = f * \psi_t(y) \). We also define that
\[
g_\psi(f)(x) = \left(\int_0^\infty |F_t(f)(x)|^2 \frac{dt}{t} \right)^{1/2},
\]
\[
S_\psi(f)(x) = \left(\int \int_{\Gamma(x)} |F_t(f)(y)|^2 \frac{dydt}{t^{n+1}} \right)^{1/2},
\]
and
\[
g_\mu(f)(x) = \left(\int \int_{\mathbb{R}^n_+} \left(\frac{t}{t + |x - y|} \right)^{\nu/2} |F_t(f)(y)|^2 \frac{dydt}{t^{n+1}} \right)^{1/2},
\]
which are the Littlewood-Paley operators (see [20]). Let \(H \) be the space
\[
H = \left\{ h : ||h|| = \left(\int_0^\infty |h(t)|^2 dt/t \right)^{1/2} < \infty \right\}
\]
or
\[
H = \left\{ h : ||h|| = \left(\int \int_{\mathbb{R}^n_+} |h(y, t)|^2 dydt/t^{n+1} \right)^{1/2} < \infty \right\},
\]
then, for each fixed \(x \in \mathbb{R}^n \), \(F_t^A(f)(x) \) and \(F_t^A(f)(x, y) \) may be viewed as the mapping from \([0, +\infty)\) to \(H \), and it is clear that
\[
g_\psi^A(f)(x) = ||F_t^A(f)(x)||, \quad g_\psi(f)(x) = ||F_t(f)(x)||,
\]
\[
S_\psi^A(f)(x) = ||\chi_{\Gamma(x)} F_t^A(f)(x, y)||, \quad S_\psi(f)(x) = ||\chi_{\Gamma(x)} F_t(f)(y)||
\]
and
\[
g_\mu^A(f)(x) = \left\| \left(\frac{t}{t + |x - y|} \right)^{\nu/2} F_t^A(f)(x, y) \right\|,
\]
\[
g_\mu(f)(x) = \left\| \left(\frac{t}{t + |x - y|} \right)^{\nu/2} F_t(f)(y) \right\|.
\]
It is easily to see that \(g_\psi^A, S_\psi^A \) and \(g_\mu^A \) satisfy the conditions of Theorem 1 and 2(see [8-12]), thus Theorem 1 and 2 hold for \(g_\psi^A, S_\psi^A \) and \(g_\mu^A \).

Application 2. Marcinkiewicz operators.

Fixed \(0 \leq \delta < n - 1, \lambda > 1 \) and \(0 < \gamma \leq 1 \). Let \(\Omega \) be homogeneous of degree zero on \(\mathbb{R}^n \) with \(\int_{S^{n-1}} \Omega(x')d\sigma(x') = 0 \). Assume that \(\Omega \in \text{Lip}_\gamma(S^{n-1}) \). The Marcinkiewicz multilinear operators are defined by
\[
p_\Omega^A(f)(x) = \left(\int_0^\infty |F_t^A(f)(x)|^2 \frac{dt}{t^\gamma} \right)^{1/2},
\]
\[\mu^A_S(f)(x) = \left[\int \int_{\Gamma(x)} |F^A_t(f)(x, y)|^2 \frac{dydt}{t^{n+3}} \right]^{1/2} \]

and

\[\mu^A(f)(x) = \left[\int \int_{R^{n+1}} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} |F^A_t(f)(x, y)|^2 \frac{dydt}{t^{n+3}} \right]^{1/2}, \]

where

\[F^A_t(f)(x) = \int_{|x-y| \leq t} \frac{\prod_{j=1}^l R_{m_j+1}(A_j; x, y)}{|x-y|^m} \frac{\Omega(x - y)}{|x-y|^{n\lambda} + 3} f(y)dy \]

and

\[F^A_t(f)(x, y) = \int_{|y-z| \leq t} \frac{\prod_{j=1}^l R_{m_j+1}(A_j; y, z)}{|y-z|^m} \frac{\Omega(y - z)}{|y-z|^{n\lambda} + 3} f(z)dz. \]

Set

\[F_t(f)(x) = \int_{|x-y| \leq t} \frac{\Omega(x - y)}{|x-y|^{n\lambda} + 3} f(y)dy; \]

We also define that

\[\mu_\Omega(f)(x) = \left(\int_0^\infty |F_t(f)(x)|^2 \frac{dt}{t^3} \right)^{1/2}, \]

\[\mu_\Omega(f)(x) = \left(\int \int_{\Gamma(x)} |F_t(f)(y)|^2 \frac{dydt}{t^{n+3}} \right)^{1/2} \]

and

\[\mu_\lambda(f)(x) = \left(\int \int_{R^{n+1}} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} |F_t(f)(y)|^2 \frac{dydt}{t^{n+3}} \right)^{1/2}, \]

which are the Marcinkiewicz operators (see [21]). Let \(H \) be the space

\[H = \left\{ h : ||h|| = \left(\int_0^\infty |h(t)|^2 \frac{dt}{t^3} \right)^{1/2} < \infty \right\} \]

or

\[H = \left\{ h : ||h|| = \left(\int \int_{R^{n+1}} |h(y, t)|^2 \frac{dydt}{t^{n+3}} \right)^{1/2} < \infty \right\}. \]

Then, it is clear that

\[\mu^A_\Omega(f)(x) = ||F^A_t(f)(x)||, \quad \mu_\Omega(f)(x) = ||F_t(f)(x)||, \]

\[\mu^A_\Omega(f)(x) = ||\chi_{\Gamma(x)} F^A_t(f)(x, y)||, \quad \mu_\Omega(f)(x) = ||\chi_{\Gamma(x)} F_t(f)(y)|| \]

and

\[\mu^A_\lambda(f)(x) = \left\| \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} F^A_t(f)(x, y) \right\|. \]
\[\mu_\lambda(f)(x) = \left| \left(\frac{t}{t + |x - y|} \right)^{\lambda/2} F_t(f)(y) \right|. \]

It is easily to see that \(\mu^A_{12}, \mu^A_S \) and \(\mu^A_\lambda \) satisfy the conditions of Theorem 1 and 2 (see [8-10], [13]), thus Theorem 1 and 2 hold for \(\mu^A_{12}, \mu^A_S \) and \(\mu^A_\lambda \).

Application 3. Bochner-Riesz operators.

Let \(\delta > (n-1)/2 \), \(B_\delta^A(f)(\xi) = (1 - t^2|\xi|^2)^{\delta/4} \hat{f}(\xi) \) and \(B_\delta^A(z) = t^{-n} B_\delta^A(z/t) \) for \(t > 0 \). Set

\[F^A_{\delta,t}(f)(x) = \int_{\mathbb{R}^n} \prod_{j=1}^m R_{m_j+1}(A_j; x, y) \frac{B_\delta^A(x - y)f(y)dy}{|x - y|^m}. \]

The maximal Bochner-Riesz multilinear operator are defined by

\[B^A_{\delta,\ast}(f)(x) = \sup_{t>0} |B^A_{\delta,t}(f)(x)|. \]

We also define that

\[B^*_\delta(f)(x) = \sup_{t>0} |B^*_\delta(t)(f)(x)| \]

which is the maximal Bochner-Riesz operator (see [14]). Let \(H \) be the space \(H = \{ h : ||h|| = \sup_{t>0} |h(t)| < \infty \} \), then

\[B^A_{\delta,\ast}(f)(x) = ||B^A_{\delta,\ast}(f)(x)||, \quad B^*_\delta(f)(x) = ||B^*_\delta(f)(x)||. \]

It is easily to see that \(B^A_{\delta,\ast} \) satisfies the conditions of Theorem 1 and 2, thus Theorem 1 and 2 hold for \(B^A_{\delta,\ast} \).

References

College of Mathematics
Changsha University of Science and Technology
Changsha 410077, P. R. of China
E-mail address: lanzheliu@163.com