X-LIFTING MODULES OVER RIGHT PERFECT RINGS

CHAEOHON CHANG
X-LIFTING MODULES OVER RIGHT PERFECT RINGS

CHAEOHOON CHANG

Abstract. Keskin and Harmanci defined the family \(B(M, X) = \{ A \leq M \mid \exists Y \leq X, \exists f \in \text{Hom}_R(M, X/Y), \text{Ker} f/A \ll M/A \} \). And Orhan and Keskin generalized projective modules via the class \(B(M, X) \).

In this note we introduce \(X \)-local summands and \(X \)-hollow modules via the class \(B(M, X) \). Let \(R \) be a right perfect ring and let \(M \) be an \(X \)-lifting module. We prove that if every co-closed submodule of any projective module \(P \) contains \(\text{Rad}(P) \), then \(M \) has an indecomposable decomposition. This result is a generalization of Kuratomi and Chang’s result [9, Theorem 3.4]. Let \(X \) be an \(R \)-module. We also prove that for an \(X \)-hollow module \(H \) such that every non-zero direct summand \(K \) of \(H \) with \(K \in B(H, X) \), if \(H \oplus H \) has the internal exchange property, then \(H \) has a local endomorphism ring.

1. Introduction

Extending modules and lifting modules have been studied extensively in recent years by many ring theorists (see, for example, [3], [5]-[14]).

Let \(M \) and \(X \) be \(R \)-modules. In [8], D. Keskin and A. Harmanci defined the family \(B(M, X) = \{ A \leq M \mid \exists Y \leq X, \exists f \in \text{Hom}_R(M, X/Y), \text{Ker} f/A \ll M/A \} \). They considered the following conditions:

\(B(M, X)-(D_1) \): For any \(A \in B(M, X) \), there exists a direct summand \(A^* \leq M \) such that \(A/A^* \ll M/A^* \).

\(B(M, X)-(D_2) \): For any \(A \in B(M, X) \), if \(B \leq B \leq M \), \(M/A \simeq B \) implies \(A \leq M \).

\(B(M, X)-(D_3) \): For any \(A \in B(M, X) \) and \(B \leq B \leq M \), if \(A \leq A \) and \(M = A + B \) then \(A \cap B \leq A \).

They defined that \(M \) is said to be \(X \)-discrete if \(B(M, X)-(D_1) \) and \(B(M, X)-(D_2) \) hold, and is said to be \(X \)-quasi-discrete if \(B(M, X)-(D_1) \) and \(B(M, X)-(D_3) \) hold. Furthermore, \(M \) is said to be \(X \)-lifting if \(B(M, X)-(D_1) \) holds. We have just seen that the following implications hold:

\("X\text{-discrete} \implies X\text{-quasi-discrete} \implies X\text{-lifting}" \).
Throughout this paper, all rings R considered are associative rings with identity and all R-modules are unital.

Let M be a right R-module and N a submodule of M. The notation $N \leq_{\oplus} M$ means that N is a direct summand of M.

A submodule K of M is called a small submodule (or superfluous submodule) of M, abbreviated $K \ll M$, in the case when, for every submodule $L \leq M$, $K + L = M$ implies $L = M$.

2. Preliminaries

Let A and P be submodules of M with $P \in \mathbf{B}(M, X)$. P is called an X-supplement of A if it is minimal with the property $A + P = M$ equivalently, if $M = A + P$ and $A \cap P \ll P$.

The module M is called X-amply supplemented if for any submodules A, B of M with $A \in \mathbf{B}(M, X)$ and $M = A + B$ there exists an X-supplement P of A such that $P \leq B$.

Let $N_1 \leq N_2 \leq M$. N_1 is a co-essential submodule of N_2 in M, abbreviated $N_1 \leq_{c} N_2$ in M, if the kernel of the canonical map $M/N_1 \longrightarrow M/N_2 \longrightarrow 0$ is small in M/N_1, or equivalently, if $M = N_2 + X$ with $N_1 \leq X$ implies $M = X$.

A submodule N of M is said to be co-closed in M (or a co-closed submodule of M), if N has no proper co-essential submodule in M, i.e., $N' \leq_{c} N$ in M implies $N = N'$. It is easy to see that any direct summand of a module M is co-closed in M. Note that every X-supplement submodule of M is co-closed in M.

For $N' \leq N \leq M$, N' is called a co-closure of N in M if N' is a co-closed submodule of M with $N' \leq_{c} N$ in M. Any submodule of a module has a closure, however, co-closure does not exist in general.

Lemma 2.1 ([9, Lemma 1.4] and [5, 3.2, 3.7]). Let $A \leq B \leq M$. Then the following hold:

1. $A \leq_{c} B$ in M if and only if $M = A + K$ for any submodule K of M with $M = B + K$.
2. If $A \ll M$ and B is co-closed in M, $A \ll B$.

Lemma 2.2 ([16, Lemma 41.14]). Any projective module satisfies the following condition:

(D) If M_1 and M_2 are direct summands of M such that $M_1 \cap M_2 \ll M$ and $M = M_1 + M_2$, then $M = M_1 \oplus M_2$.

Lemma 2.3 ([13, Theorem 3.5]). If M is a lifting module with the condition (D), then M can be expressed as a direct sum of hollow modules.

Lemma 2.4 ([1, Lemma 17.17]). Suppose that M has a projective cover. If P is projective with an epimorphism $\varphi : P \longrightarrow M$, then P has a decomposition $P = P_1 \oplus P_2$ such that $P_1 \leq \ker \varphi$ and $\varphi|_{P_2} : P_2 \longrightarrow M$ is a projective cover of M.

Theorem 2.5 (\cite[Theorem 1.1.24]{3}). For an R-module M, the following hold:

1. If M is a quasi-injective module, then M is a fully invariant submodule of $E(M)$.
2. If M is a quasi-injective module, then any direct decomposition $E(M) = E_1 \oplus \cdots \oplus E_n$ induces $M = (M \cap E_1) \oplus \cdots \oplus (M \cap E_n)$.
3. If M is a quasi-projective module with a projective cover $\varphi : P \longrightarrow M$, $\mathrm{Ker} \varphi$ is a fully invariant submodule of P; whence any endomorphism of P induces an endomorphism of M.
4. If M is a quasi-projective module with a projective cover $\varphi : P \longrightarrow M$, then any direct decomposition $P = P_1 \oplus \cdots \oplus P_n$ induces $M = \varphi(P_1) \oplus \cdots \oplus \varphi(P_n)$.

A ring R is called right perfect if every right R-module has a projective cover.

Proposition 2.6. The following statements are equivalent:

(i) Every cyclic right R-module has a projective cover;
(ii) R_R is a lifting module.

Proof. (i) \implies (ii) Let A be a submodule of R_R and let $\varphi : R \longrightarrow R/A$ be the canonical epimorphism. Since R/A has a projective cover, by Lemma 2.4, there exists a decomposition $R_R = eR \oplus (1 - e)R$ such that $(\varphi \mid_{eR}) : eR \longrightarrow R/A \longrightarrow 0$ is a projective cover and $(1 - e)R \leq A$. This implies $\mathrm{Ker} (\varphi \mid_{eR}) = A \cap eR \ll eR$. i.e., $R = eR \oplus (1 - e)R$ such that $A \cap eR \ll eR$. Thus R_R is lifting.

(ii) \implies (i) Suppose that R_R is lifting. We claim that R/A has a projective cover. Since R_R is lifting, for any $A \leq R$, there exists $A^* \leq \leq eA$ such that $R = A^* \oplus A^{**}$. Then $\pi_{|A^*} : A^{**} \longrightarrow R/A \longrightarrow 0$ is a projective cover of R/A, where $\pi : R \longrightarrow R/A \longrightarrow 0$ is the canonical epimorphism. \(\square\)

As corollaries of Proposition 2.6, we obtain the following two results.

Corollary 2.7. Let P be a projective module. Then the following statements are equivalent:

(i) Every factor module of P has a projective cover;
(ii) P is lifting.

Corollary 2.8. The following statements are equivalent:

(i) Every simple right R-module has a projective cover;
(ii) R_R satisfies the lifting property for simple factor modules.

Lemma 2.9 (\cite[Lemma 3.1]{9} and \cite[3.2]{5}). Let $f : M \longrightarrow N$ be an epimorphism. Suppose $K \leq \leq K'$ in M. Then $f(K) \leq \leq f(K')$ in N.

Lemma 2.10 (\cite[Lemma 2.2]{8}). Let M, N and X be R-modules. Then the following hold:

1. If $A \in \mathcal{B}(M, X)$ and $B \leq A$ with $A/B \ll M/B$, then $B \in \mathcal{B}(M, X)$.
(2) Let \(h : M \longrightarrow N \) be an epimorphism and \(A \in \mathcal{B}(M, X) \) with \(\text{Ker } h \leq A \). Then \(h(A) \in \mathcal{B}(N, X) \). Conversely, if \(h(A) \in \mathcal{B}(N, X) \) and \(\text{Ker } h \leq A \), then \(A \in \mathcal{B}(M, X) \).

(3) Let \(B \leq A \leq M \). Then \(A \in \mathcal{B}(M, X) \) if and only if \(A/B \in \mathcal{B}(M/B, X) \).

(4) Let \(h : N \longrightarrow M \) be an epimorphism and \(A \in \mathcal{B}(M, X) \). Then \(h^{-1}(A) \in \mathcal{B}(N, X) \).

3. Main results

Theorem 3.1. Let \(R \) be a ring. The following conditions are equivalent:

1. \(R \) is right perfect;
2. Every projective right \(R \)-module is lifting;
3. Every quasi-projective right \(R \)-module is lifting;
4. Every countably generated free right \(R \)-module is lifting.

Proof. (1) \(\iff \) (2) This follows from Corollary 2.7.

(2) \(\implies \) (3) Let \(Q_R \) be a quasi-projective module and let \(A \) be a submodule of \(Q \). Consider the canonical epimorphism \(f : Q \longrightarrow Q/A \). We can take a projective module \(P_R \) such that \(Q \) is a homomorphic image of \(P \), i.e., we have an epimorphism \(g : P \longrightarrow Q \). Since \(P \) is a lifting module, by Lemma 2.4, there exists a decomposition \(P = P_1 \oplus P_2 \) such that \(P_1 \leq g^{-1}(A) \), \(fg \mid P_2 \); \(P_2 \longrightarrow Q/A \) is a projective cover. As \(Q \) is a quasi-projective module, the decomposition \(P = P_1 \oplus P_2 \) induces a direct decomposition \(Q = g(P_1) \oplus g(P_2) \) by Theorem 2.5. Then \(g(P_1) \leq A \) and \(g(P_2) \cap A \ll g(P_2) \) hold.

(3) \(\implies \) (2) Obvious.

(4) \(\implies \) (1) By (4), \(R/J(R) \) is semisimple. Since \(R^{(N)} \) is lifting, there exists a decomposition \(R^{(N)} = X \oplus Y \) such that \(X \leq \text{Rad}(R^{(N)}) \) and \(\text{Rad}(R^{(N)}) \cap Y \ll Y \). Because \(\text{Rad}(R^{(N)}) = \text{Rad}(X) \oplus \text{Rad}(Y) \) and \(X \leq \text{Rad}(R^{(N)}) \), we see \(\text{Rad}(X) = X \), which implies \(X = 0 \) and \(R^{(N)}J(R) = \text{Rad}(R^{(N)}) \ll R^{(N)} \). Hence, by [1, Lemma 28.3], \(J(R) \) is right \(T \)-nilpotent. Thus \(R \) is right perfect. \(\square \)

A family \(\{ X_\lambda \mid \lambda \in \Lambda \} \) of submodules of a module \(M \) with \(X_\lambda \in \mathcal{B}(M, X) \) is called an \(X \)-local summand of \(M \), if \(\Sigma_{\lambda \in \Lambda} X_\lambda \) is direct and \(\Sigma_{\lambda \in F} X_\lambda \leq M \) for every finite subset \(F \subseteq \Lambda \).

By analogy with the proof of [14, Lemma 2.4] or [11, Theorem 2.17], we have the following lemma.

Lemma 3.2. If every \(X \)-local summand of a module \(M \) is a direct summand, then \(M \) has an indecomposable decomposition.

By Lemma 2.1(1), we have the following lemma.

Lemma 3.3. Assume \(P_i \leq c Q_i \) in \(P \) for every \(i \in I \). Then \(\Sigma_{i \in I} P_i \leq c \Sigma_{i \in I} Q_i \) in \(P \).
Lemma 3.4. Let \(\{P_i\}_{i \in I} \) be a set of \(R \)-modules. Assume \(P_i \in \mathcal{B}(M, X) \) for every \(i \in I \). Then \(\sum_{i \in I} P_i \subseteq \mathcal{B}(M, X) \).

Proof. Since \(P_i \in \mathcal{B}(M, X) \), there exist a submodule \(Y \) of \(X \) and a homomorphism \(f_i : M \rightarrow X/Y \) such that \(\ker f_i \subseteq M/P_i \). Put \(f = \sum_{i \in I} f_i \). Then \(f : M \rightarrow X/Y \) such that \(\ker f/\sum_{i \in I} P_i \subseteq M/\sum_{i \in I} P_i \). Thus \(\sum_{i \in I} P_i \subseteq \mathcal{B}(M, X) \). \(\square \)

Lemma 3.5. Let \(X \) be a right \(R \)-module. Suppose that \(R \) is a right perfect ring. Then every projective right \(R \)-module is \(X \)-lifting.

Proof. Let \(P \) be a projective module. For any \(A \in \mathcal{B}(P, X) \), consider the canonical epimorphism \(\varphi : P \rightarrow P/A \). Since \(P/A \) has a projective cover, by Lemma 2.4, there exists a decomposition \(P = P_1 \oplus P_2 \) such that \(P_1 \leq \ker \varphi \) and \(\varphi |_{P_2} : P_2 \rightarrow P/A \) is a projective cover of \(P/A \). Hence \(P \) is \(X \)-lifting. \(\square \)

Proposition 3.6. Let \(R \) be a right perfect ring and let \(M \) be an \(X \)-lifting module. Then \(M \) is \(X \)-amply supplemented.

Proof. Let \(A, B \leq M \) such that \(B \in \mathcal{B}(M, X) \) and \(M = A + B \). Since \(M = A + B \) and \(B \in \mathcal{B}(M, X) \), there exist \(Y \subseteq X \\) and \(f : M \rightarrow X/Y \) such that \(\ker f/B \subseteq M/B \). Consider the isomorphism \(\alpha : M/B \rightarrow A/A \cap B \). Then \(\alpha(\ker f/B) = \ker f/A \cap B \). Hence \(\ker f/A \cap B \subseteq M/A \cap B \). Therefore \(A \cap B \in \mathcal{B}(M, X) \). As \(M \) is \(X \)-lifting, there exists a direct summand \(K \) of \(M \) such that \(K \leq A \cap B \) in \(M \). Then \(A \cap B = K \oplus (K \cap (A \cap B)) \), \(M = (A \cap B) + K \) and \((A \cap B) \cap K^* \subseteq K^* \). Thus \(M = B + (A \cap K^*) \).

Let \(D \) be a co-closure of \(A \cap K^* \) in \(M \). Then \(M = B + D \) and \(B \cap D \leq B \cap (A \cap K^*) \subseteq K^* \). Hence \(B \cap D \subseteq K^* \). Since \(D \) is co-closed in \(M \), \(B \cap D \leq D \) and \(B \cap D \subseteq M, B \cap D \subseteq D \). Thus \(D \) is an \(X \)-supplement of \(B \) in \(M \) such that \(D \leq A \). \(\square \)

Lemma 3.7 ([8, Lemma 3.2]). Every epimorphic image of an \(X \)-amply supplemented \(R \)-module is \(X \)-amply supplemented.

Lemma 3.8. Let \(M \) be an \(X \)-amply supplemented module and let \(\ker f \ll M \rightarrow N \rightarrow 0 \). Suppose \(K \) is co-closed in \(M \) with \(\ker f \leq K \). Then \(f(K) \) is co-closed in \(N \).

Proof. By Lemma 3.7, \(N \) is \(X \)-amply supplemented. Let \(L \leq \ker f(K) \) in \(N \). We claim that \(L = \ker f(K) \). Since \(f \) is an epimorphism, there exists a submodule \(T \) of \(K \) in \(M \) with \(f(T) = L \). Since \(N \) is \(X \)-amply supplemented, there exists an \(X \)-supplement \(P \) of \(f(K) \) such that \(P \subseteq N \). i.e., \(N = f(K) + P \) and \(f(K) \cap P = \epsilon \). Since \(f \) is an epimorphism, there exists a submodule \(Q \) of \(M \) with \(f(Q) = P \). Then \(M = K + Q + \ker f \). As \(\ker f \ll M, M = K + Q \). This implies \(N = f(K) + f(Q) = f(K) + P = L + P = f(T) + f(Q) \). Then \(M = T + Q + \ker f = T + Q \). Thus \(T \leq K \) in \(M \) by Lemma 2.1(1). As \(K \) is co-closed in \(M \), \(T = K \). Hence \(L = f(T) = f(K) \). Therefore \(f(K) \) is co-closed in \(N \). \(\square \)
Proposition 3.9. Suppose that M is an X-lifting module. Then every co-closed submodule K of M with $K \in \mathcal{B}(M, X)$ is a direct summand.

Proof. Since M is X-lifting, there exists a direct summand K^* such that $K^* \leq_c K$ in M. As K is co-closed in M, $K = K^* \leq_\oplus M$. \hfill \square

Theorem 3.10. Let R be a right perfect ring and let M be an X-lifting module. Assume that every co-closed submodule of any projective module P contains $\text{Rad}(P)$. Then every X-local summand of M is a direct summand.

Proof. Let M be an X-lifting module and let $\Sigma_{i \in I}X_i$ be an X-local summand of M with $X_i \in \mathcal{B}(M, X)$. Since R is right perfect, M has a projective cover, say $\text{Ker} f \leq P \xrightarrow{i} M \twoheadrightarrow 0$. By Lemma 3.5, P is projective X-lifting. Since $X_i \in \mathcal{B}(M, X)$, $f^{-1}(X_i) \in \mathcal{B}(P, X)$ by Lemma 2.10(4). So there exists a decomposition $P = P_i \oplus F_i$ ($i \in I$) such that $P_i \leq_c f^{-1}(X_i)$ in P. By Lemma 2.9, $f(P_i) \leq_c f(f^{-1}(X_i)) = X_i$ in M. As X_i is co-closed in M, $f(P_i) = X_i$. First we prove that $\Sigma_{i \in I}P_i$ is direct. Let F be a finite subset of $I - \{i\}$. Since $\Sigma \oplus_{i \in I}X_i$ is an X-local summand of M, we see

$$f(P_i + \Sigma_{j \in F}P_j) = X_i \oplus (\Sigma_{j \in F}X_j) \leq_\oplus M.$$

So there exists a direct summand Y of M such that $M = X_i \oplus (\Sigma_{j \in F}X_j) \oplus Y$. As P is lifting, there exists a decomposition $P = Q \oplus Q^*$ such that $Q \leq_c f^{-1}(Y)$ in P. Then $f(Q) = Y$. Thus we see

$$P = P_i + \Sigma_{j \in F}P_j + Q + \text{Ker} f = P_i + \Sigma_{j \in F}P_j + Q.$$

Then $P_i \cap (\Sigma_{j \in F}P_j + Q) \leq \text{Ker} f \leq P$. Similarly, we see $Q \cap (P_i + \Sigma_{j \in F}P_j) \leq P$ and $P_j \cap (P_i + \Sigma_{j \in F - \{j\}}P_j + Q) \leq P$. By Lemma 2.2, we obtain $P = P_i \oplus (\Sigma_{j \in F}P_j) \oplus Q$. Hence $\Sigma_{i \in I}P_i$ is direct. By the same argument, we see $\Sigma \oplus_{i \in I}P_i$ is an X-local summand of P. By Lemma 2.3, $\Sigma \oplus_{i \in I}P_i \leq_\oplus P$. So $f(\Sigma \oplus_{i \in I}P_i)$ is co-closed in M by Lemma 3.8. Since M is X-lifting, we see

$$\Sigma \oplus_{i \in I}X_i = f(\Sigma \oplus_{i \in I}P_i) \leq_\oplus M.$$

Thus any X-local summand of M is a direct summand. \hfill \square

By Lemma 3.2 and Theorem 3.10, we obtain the first main theorem.

Theorem 3.11. Suppose that every co-closed submodule of any projective module P contains $\text{Rad}(P)$. Then every X-lifting module over right perfect rings has an indecomposable decomposition.

Let X be an R-module. A non-zero R-module H is X-hollow if for any proper submodule K of H with $K \in \mathcal{B}(H, X)$, $K \ll H$.

Proposition 3.12. Let H and X be R-modules. Assume that every non-zero direct summand K of H with $K \in \mathcal{B}(H, X)$. Then H is X-hollow if and only if H is indecomposable X-lifting.
Proof. \((\Rightarrow)\) Assume \(H\) is \(X\)-hollow. Let \(K \in \mathcal{B}(H, X)\) with \(K \preceq H\). Since \(H\) is \(X\)-hollow, \(K \ll H\). So there exists a decomposition \(H = 0 \oplus H\) such that \(0 \leq cK\) in \(H\). Thus \(H\) is \(X\)-lifting. Now, assume that \(H = H_1 \oplus H_2\), \(H_i \neq 0, i = 1, 2\). Since \(H\) is \(X\)-hollow, \(H_i \ll H, i = 1, 2\). Hence \(H_i = 0\). This is a contradiction. Therefore \(H\) is indecomposable. \((\Leftarrow)\) Suppose that \(H\) is indecomposable \(X\)-lifting. Let \(K \in \mathcal{B}(H, X)\) with \(K \preceq H\). By hypothesis, there exists a decomposition \(H = K^* \oplus K^{**}\) such that \(K^* \leq cK\) in \(H\). As \(H\) is indecomposable, we have either \(K^* = 0\) or \(K^{**} = 0\). If \(K^* = 0\), then \(K \ll H\). In the second case, \(H = K\). This is a contradiction. \(\Box\)

A module \(M\) is said to have the (finite) exchange property if, for any (finite) index set \(I\), whenever \(M \oplus N = \oplus_{i \in I} A_i\) for modules \(N\) and \(A_i\), then \(M \oplus N = M \oplus (\oplus_{i \in I} B_i)\) for some submodules \(B_i \leq A_i\). A module \(M\) has the (finite) internal exchange property if, for any (finite) direct sum decomposition \(M = \oplus_{i \in I} M_i\) and any direct summand \(X\) of \(M\), there exist submodules \(M_i \leq M_i\) such that \(M = X \oplus (\oplus_{i \in I} M_i)\).

By Proposition 3.12, we obtain the second main theorem.

Theorem 3.13 ([15, Proposition 1]). Let \(X\) be an \(R\)-module and let \(H\) be an \(X\)-hollow module. Assume that every non-zero direct summand \(K\) of \(H\) with \(K \in \mathcal{B}(H, X)\).

If \(H \oplus H\) has the internal exchange property, then \(H\) has a local endomorphism ring.

Corollary 3.14 (cf., [5, 12.2]). Let \(X\) be an \(R\)-module and let \(H\) be an \(X\)-hollow module. Assume that every non-zero direct summand \(K\) of \(H\) with \(K \in \mathcal{B}(H, X)\). Then the following conditions are equivalent:

1. \(H\) has a local endomorphism ring;
2. \(H\) has the finite exchange property;
3. \(H\) has the exchange property.

References

Information Technology Manpower Development Program
Kyungpook National University
Taegu 702-701, Korea
E-mail address: yamaguchi21@hanmail.net