ON GENERALIZED NONLINEAR QUASI-VARIATIONAL-LIKE INCLUSIONS DEALING WITH \((h, \eta)-\)PROXIMAL MAPPING

Zeqing Liu, Zhengsheng Chen, Soo Hak Shim, and Shin Min Kang

Reprinted from the Journal of the Korean Mathematical Society
Vol. 45, No. 5, September 2008

©2008 The Korean Mathematical Society
ON GENERALIZED NONLINEAR QUASI-VARIATIONAL-LIKE INCLUSIONS DEALING WITH \((h, \eta)\)-PROXIMAL MAPPING

ZEQING LIU, ZHENGSHENG CHEN, SOO HAK SHIM, AND SHIN MIN KANG

Abstract. In this paper, a new class of \((h, \eta)\)-proximal mappings for proper functionals in Hilbert spaces is introduced. The existence and Lipschitz continuity of the \((h, \eta)\)-proximal mappings for proper functionals are proved. A class of generalized nonlinear quasi-variational-like inclusions in Hilbert spaces is introduced. A perturbed three-step iterative algorithm with errors for the generalized nonlinear quasi-variational-like inclusion is suggested. The existence and uniqueness theorems of solution for the generalized nonlinear quasi-variational-like inclusion are established. The convergence and stability results of iterative sequence generated by the perturbed three-step iterative algorithm with errors are discussed.

1. Introduction

Variational inequality theory has become a very effective and powerful tool in pure and applied mathematics and has been used in a large variety of problems arising in differential equations, mechanics, contact problems in elasticity and general equilibrium, see [1]-[10], [12]-[14], [16]-[27].

monotone and generalized pseudocontractive mappings and proved the stability results of iterative sequence generated by the perturbed three-step iterative algorithm.

Inspired and motivated by the recent research works [3]-[6], [13]-[14], [16]-[20], [23]-[25], in this paper, we introduce and study a new class of generalized nonlinear quasi-variational-like inclusions, which includes as special cases, the classes of variational inclusions and quasivariational inclusions studied in [1], [3]-[6], [13]-[14], [16], [23]. Applying η-subdifferential and (h, η)-proximal mappings, we establish the equivalence between the generalized nonlinear quasi-variational-like inclusion and the fixed point problem. By using the equivalence, a new perturbed three-step iterative algorithm with errors is suggested and analyzed. The convergence criteria of the algorithm is also discussed. Our results extend and improve the recent results due to Cho-Kim-Huang-Kang [3], Ding [4] and [5], Ding-Luo [6], Hassouni-Moudafi [13], Kazmi [14], Liu-Kang [16] and Verma [23].

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space endowed with the norm $\| \cdot \|$ and inner product (\cdot, \cdot), respectively. Let $a, b, c, d, g : H \to H$ and $\eta, M, N : H \times H \to H$ be mappings and $\phi : H \times H \to \mathbb{R} \cup \{+\infty\}$ be a proper functional such that for each fixed $y \in H$, $\phi(\cdot, y) : H \to H$ is lower semicontinuous and η-subdifferentiable on H and $g(H) \cap \text{dom} \phi(\cdot, y) \neq \emptyset$.

Given $f \in H$, we consider the following generalized nonlinear quasi-variational-like inclusion problem:

Find $x \in H$ such that $gx \in \text{dom} \phi(\cdot, x)$ and

$$\langle N(ax, bx) - M(cx, dx) - f, \eta(y, gx) \rangle \geq \phi(gx, x) - \phi(y, x), \quad \forall y \in H.$$ (2.1)

Special cases:

If $f = 0$, $N(ax, bx) = ax - bx$ and $M(cx, dx) = 0$ for all $x, y \in H$, then the problem (2.1) reduces to the following variational inclusion problem:

Find $x \in H$ such that $gx \in \text{dom} \phi(\cdot, x)$ and

$$\langle ax - bx, \eta(y, gx) \rangle \geq \phi(gx) - \phi(y), \quad \forall y \in H,$$
which was introduced and studied by Ding-Luo [6].

If $f = 0$, $\phi(x, y) = \phi(x)$, $N(ax, bx) = ax - bx$, $M(cx, dx) = 0$ and $\eta(y, x) = y - x$ for all $x, y \in H$, then the problem (2.1) reduces to the following inclusion problem:

Find $x \in H$ such that $gx \in \text{dom} \phi(\cdot, x)$ and

$$\langle ax - bx, y - gx \rangle \geq \phi(gx) - \phi(y), \quad \forall y \in H,$$
which was studied by Hassouni-Moudafi [13].

If $f = 0$, $\eta(x, y) = x - y$, $N(ax, bx) = ax - bx$, $M(cx, dx) = 0$ and $K(x) = mx + K$ for all $x, y \in H$, where $m : H \to H$ is a mapping and K is a closed
convex subset of H, $\phi : H \times H \to H$ is defined by

$$\phi(x, y) = I_{K(y)}(x), \quad \forall x, y \in H,$$

and $I_{K(y)}(x)$ is the indicator function of $K(y)$, that is,

$$I_{K(y)}(x) = \begin{cases} 0, & \text{if } x \in K(y), \\ +\infty, & \text{otherwise,} \end{cases}$$

then the problem (2.1) reduces to the following strongly nonlinear quasi-variational inequality problem:

Find $x \in H$ such that $gx \in K(x)$ and

$$\langle ax - bx, y - gx \rangle \geq 0, \quad \forall y \in K(x),$$

which includes a number of variational inequalities, quasi-variational inequalities, complementarity and quasi-complementarity problems as special cases, studied previously by many authors.

Now we recall the following definitions and results.

Definition 2.1. Let $h : H \to H$, $\eta : H \times H \to H$ be mappings.

1. h is said to be δ-η-strongly monotone if there exists a constant $\delta > 0$ such that

$$\langle hx - hy, \eta(x, y) \rangle \geq \delta \|x - y\|^2, \quad \forall x, y \in H;$$

2. h is said to be σ-Lipschitz continuous if there exists a constant $\sigma > 0$ such that

$$\|hx - hy\| \leq \sigma \|x - y\|, \quad \forall x, y \in H;$$

3. η is said to be α-Lipschitz continuous if there exists a constant $\alpha > 0$ such that

$$\|\eta(x, y)\| \leq \alpha \|x - y\|, \quad \forall x, y \in H.$$

Definition 2.2. Let $a, b, c : H \to H$ be mappings. A mapping $N : H \times H \to H$ is called

1. strongly monotone with respect to a in the first argument if there exists a constant $r > 0$ such that

$$\langle N(ax, u) - N(ay, u), x - y \rangle \geq r \|x - y\|^2, \quad \forall x, y, u \in H;$$

2. relaxed coercive with respect to a in the first argument if there exist constants $\gamma > 0$ and $r > 0$ such that

$$\langle N(ax, u) - N(ay, u), x - y \rangle \geq r \|x - y\|^2 - \gamma \|ax - ay\|^2, \quad \forall x, y, u \in H;$$

3. Lipschitz continuous in the first argument if there exists a constant $t > 0$ satisfying

$$\|N(x, u) - N(y, u)\| \leq t \|x - y\|, \quad \forall x, y, u \in H;$$
generalized pseudocontractive with respect to a in the first argument if there exists a constant $s > 0$ such that
\[\langle N(ax, u) - N(ay, u), x - y \rangle \leq s\|x - y\|^2, \quad \forall x, y, u \in H; \]

(5) mixed Lipschitz continuous with respect to a and b in the first and second arguments if there exists a constant $\beta > 0$ such that
\[\|N(ax, bx) - N(ay, by)\| \leq \beta\|x - y\|, \quad \forall x, y \in H. \]

In a similar way, we can define the Lipschitz continuity of the mapping N in the second argument.

Definition 2.3 ([24]). A functional $f : H \times H \to \mathbb{R} \cup \{+\infty\}$ is said to be 0-diagonally quasi-concave in the first argument if for any finite set $\{x_1, \ldots, x_n\} \subset H$ and for any $y = \sum_{i=1}^{n} \lambda_i x_i$ with $\lambda_i \geq 0$ and $\sum_{i=1}^{n} \lambda_i = 1$,
\[\min_{1 \leq i \leq n} f(x_i, y) \leq 0. \]

Definition 2.4. Let $\eta : H \times H \to H$ be a mapping. A proper functional $\phi : H \to \mathbb{R} \cup \{+\infty\}$ is said to be η-subdifferentiable at a point $x \in H$ if there exists a point $f^* \in H$ such that
\[\phi(y) \geq \phi(x) + \langle f^*, \eta(y, x) \rangle, \quad \forall y \in H, \]
where f^* is called a η-subgradient of ϕ at x. The set of all η-subgradient of ϕ at x is denoted by $\Delta \phi(x)$. The mapping $\Delta \phi : H \to 2^H$ denoted by
\[\Delta \phi(x) = \{ f^* \in H : \phi(y) \geq \phi(x) + \langle f^*, \eta(y, x) \rangle, \forall y \in H \}, \quad \forall x \in H, \]
is said to be η-subdifferential of ϕ.

Definition 2.5. Let $\phi : H \to \mathbb{R} \cup \{+\infty\}$ be a proper functional, $\eta : H \times H \to H$ and $h : H \to H$ be mappings, and $\rho > 0$ be a constant. Assume that for any given $x \in H$ there exists a unique point $u \in H$ such that
\[\langle hu - x, \eta(y, u) \rangle \geq \rho \phi(u) - \rho \phi(y), \quad \forall y \in H. \]
Then the mapping $x \mapsto u$, denoted by $J_{\rho, h}^{\phi}(x)$, is said to be (h, η)-proximal mapping of ϕ.

It follows from the definition of $J_{\rho, h}^{\phi}(x)$ that $x - hu \in \rho \Delta \phi(u)$, that is,
\[J_{\rho, h}^{\phi}(x) = (h + \rho \Delta \phi)^{-1}(x). \]

Definition 2.6 ([11]). Let $T : H \to H$ be a mapping and $x_0 \in H$. Assume that $x_{n+1} = f(T, x_n)$ define an iterative procedure which yields a sequence of points \(\{x_n\}_{n \geq 0} \subseteq H \). Suppose that $F(T) = \{ x \in H : x = Tx \} \neq \emptyset$ and $\{x_n\}_{n \geq 0}$ converges to some $u \in F(T)$. Let $\{z_n\}_{n \geq 0} \subset H$ and $\varepsilon_n = \|z_{n+1} - f(T, z_n)\|$ for $n \geq 0$. If $\lim_{n \to \infty} \varepsilon_n = 0$ implies that $\lim_{n \to \infty} z_n = u$, then the iterative procedure defined by $x_{n+1} = f(T, x_n)$ is said to be T-stable or stable with respect to T.
Lemma 2.1 ([15]). Let \(\{a_n\}_{n \geq 0}, \{b_n\}_{n \geq 0}, \{c_n\}_{n \geq 0} \) and \(\{t_n\}_{n \geq 0} \) be four sequences of nonnegative numbers satisfying
\[
a_{n+1} \leq (1 - t_n)a_n + t_nb_n + c_n, \quad \forall n \geq 0,
\]
where \(\{t_n\}_{n \geq 0} \subset [0, 1], \sum_{n=0}^{\infty} t_n = +\infty, \lim_{n \to \infty} b_n = 0 \) and \(\sum_{n=0}^{\infty} c_n < +\infty. \)
Then \(\lim_{n \to \infty} a_n = 0. \)

Lemma 2.2 ([7]). Let \(D \) be a nonempty convex subset of a topological vector space and \(f : D \times D \to \mathbb{R} \cup \{+\infty\} \) be such that

(a) for each \(x \in D \), \(y \mapsto f(x, y) \) is lower semicontinuous on each compact subset of \(D \),
(b) for each finite set \(\{x_1, \ldots, x_m\} \subset D \) and for each \(y = \sum_{i=1}^{m} \lambda_i x_i \) with \(\lambda_i \geq 0 \) and \(\sum_{i=1}^{m} \lambda_i = 1 \), \(\min_{0 \leq i \leq m} f(x_i, y) \leq 0 \),
(c) there exist a nonempty compact convex subset \(D_0 \) of \(D \) and a nonempty compact subset \(K \) of \(D \) such that for each \(y \in D \setminus K \), there is an \(x \in \text{co}(D_0 \cup \{y\}) \) satisfying \(f(x, y) > 0 \).
Then there exists \(\hat{y} \in D \) such that \(f(x, \hat{y}) \leq 0 \).

Now we show the existence and Lipschitz continuity of the \((h, \eta)\)-proximal mapping for a proper functional \(\phi \) in Hilbert spaces.

Theorem 2.1. Let \(\eta : H \times H \to H \) be \(\tau \)-Lipschitz continuous such that \(\eta(x, y) = -\eta(y, x) \) for all \(x, y \in H \), \(\phi : H \to \mathbb{R} \cup \{+\infty\} \) be a lower semicontinuous \(\eta \)-subdifferentiable proper functional and \(h : H \to H \) be \(\gamma \)-\(\eta \)-strongly monotone and \(\lambda \)-Lipschitz continuous. Assume that for any given \(x \in H \), the functional \(k : H \times H \to \mathbb{R} \) defined by \(k(y, u) = \langle x - hu, \eta(y, u) \rangle \) is 0-DQC\(\nu \) in the first argument. Let \(\rho > 0 \) be a constant. Then for any given \(x \in H \), there exists a unique \(u \in H \) such that
\[
\langle hu - x, \eta(y, u) \rangle \geq \rho \phi(u) - \rho \phi(y), \quad \forall y \in H.
\]
That is, \(u = J_{\rho, h}^\Delta \phi(x) \).

Proof. For any given \(x \in H \), define a functional \(f : H \times H \to \mathbb{R} \cup \{+\infty\} \) by
\[
f(y, u) = \langle x - hu, \eta(y, u) \rangle + \rho \phi(u) - \rho \phi(y), \quad \forall y \in H.
\]
It follows from the continuity of \(\eta(y, u) \) and lower semicontinuity of \(\phi \) that for each \(y \in H \), \(u \mapsto f(y, u) \) satisfies the condition (b) of Lemma 2.2. Otherwise, there exists a finite set \(\{y_1, \ldots, y_m\} \subset H \) and some \(u_0 = \sum_{i=1}^{m} \lambda_i y_i \) with \(\lambda_i \geq 0 \) and \(\sum_{i=1}^{m} \lambda_i = 1 \) such that
\[
\langle x - hu_0, \eta(y_i, u_0) \rangle + \rho \phi(u_0) - \rho \phi(y_i) > 0, \quad 1 \leq i \leq m.
\]
Since \(\phi \) is \(\eta \)-subdifferentiable at \(u_0 \), there exists \(f_{u_0}^* \in H \) such that
\[
\phi(y) \geq \phi(u_0) + \langle f_{u_0}^*, \eta(y, u_0) \rangle, \quad \forall y \in H.
\]
By virtue of (2.3), (2.4), we infer that
\[
\langle x - hu_0, \eta(y_i, u_0) \rangle + \rho \phi(y_i) - \rho \phi(u_0) \\
\geq \rho \langle f_{u_0}^*, \eta(y_i, u_0) \rangle, \quad 1 \leq i \leq m,
\]
which implies that
\[
\langle x - \rho f_{u_0} - hu_0, \eta(y, u_0) \rangle > 0, \quad 1 \leq i \leq m.
\]
Since \(k(y, u_0) = \langle x - \rho f_{u_0} - hu_0, \eta(y, u_0) \rangle\) is 0-DQCV in the first argument, it follows that
\[
\min_{1 \leq i \leq m} \langle x - \rho f_{u_0} - hu_0, \eta(y, u_0) \rangle \leq 0 < \min_{1 \leq i \leq m} \langle x - \rho f_{u_0} - hu_0, \eta(y, u_0) \rangle,
\]
which is a contradiction. Hence \(f\) satisfies the condition (b) of Lemma 2.2. Let \(\bar{y} \in \text{dom}\phi\). Since \(\phi\) is \(\eta\)-subdifferentiable at \(\bar{y}\), there exists \(f_{\bar{y}}^* \in H\) such that
\[
\phi(u) - \phi(\bar{y}) \geq \langle f_{\bar{y}}^*, \eta(u, \bar{y}) \rangle, \quad \forall u \in H,
\]
which implies that
\[
f(\bar{y}, u) = \langle x - hu, \eta(\bar{y}, u) \rangle + \rho \phi(u) - \rho \phi(\bar{y}) \\
\geq \langle h\bar{y} - hu, \eta(\bar{y}, u) \rangle + \langle x - h\bar{y}, \eta(\bar{y}, u) \rangle + \rho \langle f_{\bar{y}}^*, \eta(u, \bar{y}) \rangle \\
\geq \gamma \|\bar{y} - u\|^2 - \tau \|x - h\bar{y}\| \|\bar{y} - u\| - \tau \rho \|f_{\bar{y}}^*\| \|\bar{y} - u\| \\
= \|\bar{y} - u\| \|\gamma \|\bar{y} - u\| - \tau \|x - h\bar{y}\| - \tau \rho \|f_{\bar{y}}^*\|.
\]
Let \(r = (1/\gamma)\tau \|x - h\bar{y}\| + \rho \|f_{\bar{y}}^*\|, K = \{u \in H : \|\bar{y} - u\| \leq r\}\) and \(D_0 = \{\bar{y}\}\). Clearly \(D_0\) and \(K\) are both weakly compact convex subsets of \(H\) and for each \(u \in H\backslash K\), there exists \(\bar{y} \in \text{co}(D_0 \cup \{\bar{y}\})\) such that \(f(\bar{y}, u) > 0\). Hence all the conditions of Lemma 2.2 are satisfied. By Lemma 2.2, there exists \(\bar{u} \in H\) such that \(f(\bar{y}, \bar{u}) \leq 0, \forall y \in H\), that is,
\[
\langle h\bar{u} - x, \eta(y, \bar{u}) \rangle \geq \rho \phi(\bar{u}) - \rho \phi(y), \quad \forall y \in H.
\]
Now we show that \(\bar{u}\) is a unique solution of the problem (2.2). Suppose that \(u_1, u_2 \in H\) are arbitrary two solutions of the problem (2.2). It follows that
\[
\langle hu_1 - x, \eta(\bar{u}, u_1) \rangle \geq \rho \phi(u_1) - \rho \phi(\bar{u}), \quad \forall y \in H,
\]
(2.6)
\[
\langle hu_2 - x, \eta(y, u_2) \rangle \geq \rho \phi(u_2) - \rho \phi(y), \quad \forall y \in H.
\]
(2.7)
Taking \(y = u_2\) in (2.6) and \(y = u_1\) in (2.7), and adding these inequalities, we have
\[
\langle hu_1 - x, \eta(u_2, u_1) \rangle + \langle hu_2 - x, \eta(u_1, u_2) \rangle \geq 0.
\]
Since \(\eta(x, y) = -\eta(y, x), \forall x, y \in H\) and \(h\) is \(\gamma\)-\(\eta\)-strongly monotone, by (2.8) we deduce that
\[
\gamma \|u_1 - u_2\|^2 \leq \langle hu_1 - hu_2, \eta(u_1, u_2) \rangle \leq 0,
\]
which implies that \(u_1 = u_2\). This completes the proof.

Theorem 2.2. Let \(\eta : H \times H \to H\) be \(\tau\)-Lipschitz continuous such that \(\eta(x, y) = -\eta(y, x)\) for all \(x, y \in H\), \(\phi : H \to \mathbb{R} \cup \{+\infty\}\) be a lower semicontinuous \(\eta\)-subdifferentiable proper functional and \(h : H \to H\) be \(\gamma\)-\(\eta\)-strongly monotone and \(\lambda\)-Lipschitz continuous. Let \(\rho > 0\) be a constant. Assume that for any given \(x \in H\), the functional \(k : H \times H \to \mathbb{R}\) defined by \(k(y, u) = \langle x - hu, \eta(y, u) \rangle\)
is 0-DQCV in the first argument. Then the \((h, \eta)\)-proximal mapping \(J_{p,h}^{\Delta \phi}\) of \(\phi\) is \(\tau/\gamma\)-Lipschitz continuous.

Proof. Let \(x_1, x_2 \in H, u_1 = J_{p,h}^{\Delta \phi}(x_1)\) and \(u_2 = J_{p,h}^{\Delta \phi}(x_2)\). It follows from Theorem 2.1 that

\[
\langle hu_1 - x_1, \eta(y, u_1) \rangle \geq \rho \phi(u_1) - \rho \phi(y), \quad \forall y \in H,
\]

(2.9)

\[
\langle hu_2 - x_2, \eta(y, u_2) \rangle \geq \rho \phi(u_2) - \rho \phi(y), \quad \forall y \in H.
\]

(2.10)

Taking \(y = u_2\) in (2.9) and \(y = u_1\) in (2.10), and adding these inequalities, we conclude that

\[
\langle hu_1 - x_1, \eta(u_2, u_1) \rangle + \langle hu_2 - x_2, \eta(u_1, u_2) \rangle \geq 0.
\]

Since \(h\) is \(\gamma/\eta\)-strongly monotone and \(\eta\) is \(\tau\)-Lipschitz continuous with \(\eta(x, y) = -\eta(y, x)\) for all \(x, y \in H\), we infer that

\[
\gamma \|u_1 - u_2\|^2 \leq \langle hu_1 - hu_2, \eta(u_1, u_2) \rangle \leq \langle x_1 - x_2, \eta(u_1, u_2) \rangle \leq \|x_1 - x_2\| \|\eta(u_1, u_2)\| \leq \tau \|x_1 - x_2\| \|u_1 - u_2\|,
\]

which implies that

\[
\|J_{p,h}^{\Delta \phi}(x_1) - J_{p,h}^{\Delta \phi}(x_2)\| = \|u_1 - u_2\| \leq \frac{\tau}{\gamma} \|x_1 - x_2\|,
\]

that is, \(J_{p,h}^{\Delta \phi}\) is \(\tau/\gamma\)-Lipschitz continuous. This completes the proof. □

Remark 2.1. If \(\eta(x, y) = x - y\) for all \(x, y \in H\), where \(h\) is the identity mapping in \(H\), then Theorem 2.2 reduces to Lemma 2.2 in [13].

3. A perturbed three-step iterative algorithm with errors

We first transfer the problem (2.1) into a fixed point problem.

Lemma 3.1. \(x^* \in H\) is a solution of the problem (2.1) if and only if \(x^*\) satisfies the following relation

\[
gx^* = J_{p,h}^{\Delta \phi}([hx^* - \rho(N(ax^*, bx^*) - M(cx^*, dx^*) - f)],
\]

(3.1)

where \(J_{p,h}^{\Delta \phi}((\cdot, x^*)) = (h + \rho \Delta \phi(\cdot, x^*))^{-1}\) is the \((h, \eta)\)-proximal mapping of \(\phi(\cdot, x^*)\) and \(\rho > 0\) is a constant.

Proof. The fact directly follows from Definitions 2.4 and 2.5. □

Based on Lemma 3.1, we suggest the following perturbed three-step iterative algorithm with errors.

Algorithm 3.1. Let \(N, M, \eta : H \times H \to H\), \(a, b, c, d, g, h : H \to H\) be mappings, and \(\{\phi_n\}_{n \geq 0} : H \times H \to \mathbb{R} \cup \{+\infty\}\) be a sequence of proper functionals such that for each given \(x \in H, n \geq 0\), the \((h, \eta)\)-proximal mapping of \(\phi_n(\cdot, x)\)
exists. Let $E x = h x - \rho N(ax, bx) + \rho M(cx, dx) + \rho f$ for all $x \in H$. For any given $u_0 \in H$, compute sequence $\{u_n\}_{n \geq 0}$ by the following iterative schemes:

$$
\begin{align*}
 u_{n+1} &= (1 - a_n - b_n)u_n \\
 &+ a_n [v_n - gv_n + J_{\rho,h}^\phi(v_n, Ev_n)] + b_n p_n, \\
 v_n &= (1 - a'_n - b'_n)u_n \\
 &+ a'_n [w_n - gw_n + J_{\rho,h}^\phi(w_n, Ew_n)] + b'_n q_n, \\
 w_n &= (1 - a''_n - b''_n)u_n \\
 &+ a''_n [u_n - gu_n + J_{\rho,h}^\phi(u_n, Eu_n)] + b''_n r_n, \quad n \geq 0,
\end{align*}
$$

(3.2)

where $\rho > 0$, $\{p_n\}_{n \geq 0}$, $\{q_n\}_{n \geq 0}$ and $\{r_n\}_{n \geq 0}$ are bounded sequences in H introduced to take into account possible in exact computation and sequences $\{a_n\}_{n \geq 0}$, $\{b_n\}_{n \geq 0}$, $\{a'_n\}_{n \geq 0}$, $\{b'_n\}_{n \geq 0}$, $\{a''_n\}_{n \geq 0}$ and $\{b''_n\}_{n \geq 0}$ are in $[0, 1]$ satisfying

$$
\max\{a_n + b_n, a'_n + b'_n, a''_n + b''_n\} \leq 1, \quad n \geq 0,
$$

(3.3)

$$
\sum_{n=0}^{\infty} a_n = +\infty, \quad \lim_{n \to \infty} a_n b''_n = \lim_{n \to \infty} b'_n = 0
$$

(3.4)

and one of the following conditions:

$$
\sum_{n=0}^{\infty} b_n < +\infty;
$$

(3.5)

$$
\text{with } \lim_{n \to \infty} b_n = 0 \text{ and } b_n = a_n h_n, \quad \forall n \geq 0.
$$

(3.6)

Remark 3.1. In case $a''_n = b''_n = 0$ for all $n \geq 0$, then Algorithm 3.1 reduces to the Ishikawa type perturbed iterative algorithm in [3]. If $a'_n = b'_n = 0$, for all $n \geq 0$, then the Ishikawa type perturbed iterative algorithm reduces to the Mann type perturbed iterative algorithm in [23]. If h is the identity mapping in H and $M(x,y) = 0, N(x, y) = x - y = \eta(x, y)$ for all $x, y \in H$, and $b_n = b'_n = b''_n = a''_n = 0$ for all $n \geq 0$, Algorithm 3.1 reduces to the algorithm in [13].

4. Existence, convergence and stability

In this section, we give the existence and uniqueness theorems of solution for the generalized nonlinear quasi-variational-like inclusion, and show the convergence and stability results of iterative sequence generated by the perturbed three-step iterative algorithm with errors.
Theorem 4.1. Let $a, b, c, d, g : H \to H$ be mappings, a, b, g be Lipschitz continuous with constants $\lambda_a, \lambda_b, \lambda_g$, respectively, and g be σ-strongly monotone. Let $\eta : H \times H \to H$ be δ-strongly monotone and τ-Lipschitz continuous such that $\eta(x, y) = -\eta(y, x)$, $\forall x, y \in H$. Let $h : H \to H$ be γ-η-strongly monotone and λ-Lipschitz continuous. For each given $x \in H$, the functional $k : H \times H \to \mathbb{R}$ defined by $k(y, u) = (x - hu, \eta(y, u))$ is 0-DQCV in the first argument. Let $N : H \times H \to H$ be Lipschitz continuous in the first and second arguments with constants ξ and ζ, respectively, and be strongly monotone with respect to a in the first argument with constant α. Assume that $M : H \times H \to H$ is mixed Lipschitz continuous with respect to c and d in the first and second arguments with constant β. Let ϕ and $\phi_n : H \times H \to \mathbb{R} \cup \{+\infty\}$ be such that for each fixed $y \in H$ and $n \geq 0$, $\phi(-, y)$ and $\phi_n(-, y)$ are lower semicontinuous η-subdifferentiable proper functionals satisfying $g(H) \cap \text{dom} \phi(-, y) \neq \emptyset$, $g(H) \cap \text{dom} \phi_n(-, y) \neq \emptyset$ and

$$
\sup \{ \| J_{\rho, h}^{\Delta \phi_n(\cdot, x)}(z) - J_{\rho, h}^{\Delta \phi_n(\cdot, y)}(z) \|, \| J_{\rho, h}^{\Delta \phi_n(\cdot, x)}(z) - J_{\rho, h}^{\Delta \phi_n(\cdot, y)}(z) \| : n \geq 0 \}
\leq \mu \| x - y \|, \ \forall x, y, z \in H,
$$

(4.1)

$$
\lim_{n \to \infty} \| J_{\rho, h}^{\Delta \phi_n(\cdot, y)}(z) - J_{\rho, h}^{\Delta \phi_n(\cdot, y)}(z) \| = 0, \ \forall y, z \in H,
$$

where $\mu > 0$ is a constant. Let $\{x_n\}_{n \geq 0}$ be any sequence in H and define $\{\varepsilon_n\}_{n \geq 0} \subset [0, \infty)$ by

$$
\varepsilon_n = \| x_{n+1} - [(1 - a_n - b_n)x_n
+ a_n(y_n - gy_n + J_{\rho, h}^{\Delta \phi_n(\cdot, y_n)}(Ex_n) + b_n p_n)] \|,
$$

$$
y_n = (1 - a_n' - b_n')x_n
+ a_n'[z_n - g z_n + J_{\rho, h}^{\Delta \phi_n(\cdot, z_n)}(Ex_n)] + b_n' q_n,
$$

$$
z_n = (1 - a_n'' - b_n'')x_n
+ a_n''[x_n - g x_n + J_{\rho, h}^{\Delta \phi_n(\cdot, x_n)}(Ex_n)] + b_n'' r_n, \quad n \geq 0.
$$

(4.2)

Let $K = (1 + \frac{1}{\tau}) \sqrt{1 - 2\sigma + \lambda_b^2} + \frac{1}{\tau} \lambda_b \sqrt{1 - 2\gamma + \lambda_b^2} + \mu$, $P = \lambda_b^2 \xi^2 + \tau^2 (\zeta \lambda_b + \beta)^2$, $Q = \alpha \tau^2$. If there exists a constant $\rho > 0$ satisfying one of the following conditions:

$$
P > 0, \quad |Q - (1 - K)(\zeta \lambda_b + \beta)\tau \delta| > (\tau^2 - \delta^2(1 - K)^2)P,
$$

(4.3)

$$
|\rho - \frac{Q - (1 - K)(\zeta \lambda_b + \beta)\tau \delta}{P}| < \sqrt{|Q - (1 - K)(\zeta \lambda_b + \beta)\tau \delta|^2 - P(\tau^2 - (1 - K)^2 \delta^2)},
$$

ON GENERALIZED NONLINEAR QUASI-VARIATIONAL-LIKE INCLUSIONS 1331
\[P < 0, \]
\[
\left| \frac{\rho - Q - (1 - K)(\zeta \lambda_b + \beta)\tau \delta}{P} \right| > \sqrt{\frac{[Q - (1 - K)(\zeta \lambda_b + \beta)\tau \delta]^2 - P(\tau^2 - (1 - K)^2\delta^2)}{P}},
\]
then the problem (2.1) has a unique solution \(x^* \in H \) and the iterative sequence \(\{x_n\}_{n \geq 0} \) defined by Algorithm 3.1 converges strongly to \(x^* \). Moreover, if there exists a constant \(A > 0 \) satisfying
\[
\text{(4.5)} \quad a_n \geq A, \quad n \geq 0,
\]
then \(\lim_{n \to \infty} x_n = x^* \) if and only if \(\lim_{n \to \infty} \varepsilon_n = 0 \).

Proof. First, we define a mapping \(F : H \to H \) by
\[
F(x) = x - gx + J_{\rho,h}^{\Delta \phi(x)}(Ex), \quad \forall x \in H.
\]
For any \(x, y \in H \), we conclude that
\[
\|F(x) - F(y)\|
\leq \|x - y - (gx - gy)\| + \|J_{\rho,h}^{\Delta \phi(x)}(Ex) - J_{\rho,h}^{\Delta \phi(x)}(Ey)\|
+ \|J_{\rho,h}^{\Delta \phi(x)}(Ey) - J_{\rho,h}^{\Delta \phi(y)}(Ey)\|
\leq \left(1 + \frac{\tau}{\delta}\right)\|x - y - (gx - gy)\|
+ \frac{\tau}{\delta}\|gx - gy - (hx - hy)\|
+ \frac{\tau}{\delta}\|x - y - \rho(N(ax, bx) - N(ay, by))\|
+ \frac{\rho}{\delta}\|M(cx, dx) - M(cy, dy)\| + \mu\|x - y\|
\leq \left(1 + \frac{\tau}{\delta}\right)\sqrt{1 - 2\sigma + \lambda_2^2}\|x - y\|
+ \frac{\tau}{\delta}\sqrt{1 - 2\rho\alpha + \rho^2\xi^2\lambda_2^2 + \rho\zeta\lambda_b}\|x - y\|
+ \frac{\tau\rho^2\beta}{\delta}\|x - y\| + \mu\|x - y\|
= \theta\|x - y\|,
\]
where
\[
\theta = \left(1 + \frac{\tau}{\delta}\right)\sqrt{1 - 2\sigma + \lambda_2^2} + \frac{\tau}{\delta}\sqrt{1 - 2\rho\alpha + \rho^2\xi^2\lambda_2^2 + \rho\zeta\lambda_b + \rho\beta}\|x - y\|
+ \sqrt{1 - 2\rho\alpha + \rho^2\xi^2\lambda_2^2 + \rho\zeta\lambda_b + \rho\beta} + \mu.
\]
It follows from one of (4.3), (4.4), and (4.6) that \(\theta < 1 \) and that \(F \) is a contraction mapping and that it has a unique fixed point \(x^* \in H \) such that \(x^* = F(x^*) \), that is,
\[
gx^* = J_{\rho,h}^{\Delta \phi(x^*)}[hx^* - \rho(N(ax^*, bx^*) - M(cx^*, dx^*) - f)].
Thus x^* is a unique solution of the problem (2.1) in H.

Now we show that $\lim_{n \to \infty} x_n = x^*$. Notice that

$$x^* = (1 - a_n - b_n)x^* + a_n [x^* - gx^* + J_{\rho,h}^{\Delta \phi_n(x^*)}(Ex^*)] + b_n x^*$$

$$= (1 - a_n' - b_n')x^* + a_n' [x^* - gx^* + J_{\rho,h}^{\Delta \phi_n(x^*)}(Ex^*)] + b_n' x^*$$

$$= (1 - a_n'' - b_n'')x^* + a_n'' [x^* - gx^* + J_{\rho,h}^{\Delta \phi_n(x^*)}(Ex^*)] + b_n'' x^*, \quad n \geq 0.$$

Put

$$d_n = \| J_{\rho,h}^{\Delta \phi_n(x^*)}(Eu) - J_{\rho,h}^{\Delta \phi_n(y^*)}(Eu) \|, \quad \forall x, y, u \in H,$n \geq 0}.$$.

It follows from (4.1) that

$$\lim_{n \to \infty} d_n = 0.$$.

Using (3.2), (3.3), and (4.7), we get that

$$\| u_{n+1} - x^* \|$$

$$\leq (1 - a_n - b_n)\| u_n - x^* \| + a_n [\| v_n - x^* - (g v_n - g x^*) \|$$

$$+ \| J_{\rho,h}^{\Delta \phi_n(v_n)}(E v_n) - J_{\rho,h}^{\Delta \phi_n(x^*)}(E x^*) \|$$

$$+ \| J_{\rho,h}^{\Delta \phi_n(x^*)}(E x^*) - J_{\rho,h}^{\Delta \phi_n(x^*)}(E x^*) \|$$

$$+ \| J_{\rho,h}^{\Delta \phi_n(x^*)}(E x^*) - J_{\rho,h}^{\Delta \phi_n(x^*)}(E x^*) \|] + b_n \| p_n - x^* \|$$

$$\leq (1 - a_n - b_n)\| u_n - x^* \| + a_n \sqrt{1 - 2 \sigma^2 + \lambda} \| v_n - x^* \|$$

$$+ \frac{\sigma}{\delta} a_n \| E v_n - E x^* \| + a_n \| v_n - x^* \| + a_n d_n + b_n L$$

$$\leq (1 - a_n - b_n)\| u_n - x^* \| + a_n \sqrt{1 - 2 \sigma^2 + \lambda} \| v_n - x^* \|$$

$$+ \frac{\sigma}{\delta} a_n \| v_n - x^* - (g v_n - g x^*) \|$$

$$+ \frac{\sigma}{\delta} a_n \| g v_n - g x^* - (h g v_n - h g x^*) \|$$

$$+ \frac{\sigma}{\delta} a_n \| v_n - x^* - \rho (N(a v_n, b v_n) - N(ax^*, b x^*)) \|$$

$$+ \frac{\sigma}{\delta} a_n \| M(c v_n, d v_n) - M(c x^*, d x^*) \| + a_n \| v_n - x^* \|$$

$$+ a_n d_n + b_n L.$$
\[
(1 - a_n - b_n)\|u_n - x^*\| + a_n \left\{ \left(1 + \frac{\tau}{\delta} \right) \sqrt{1 - 2\sigma + \lambda_g^2} \right. \\
+ \frac{\tau}{\delta} \left[\lambda_g \sqrt{1 - 2\gamma + \lambda_L^2} + \frac{\tau}{\delta} \sqrt{1 - 2\rho\alpha + \rho^2\xi_2^2\lambda_L^2} \right] \\
+ \rho\lambda_\beta \zeta + \rho\beta + \mu \right\} \|v_n - x^*\| + a_n d_n + b_n L \\
= (1 - a_n - b_n)\|u_n - x^*\| + a_n d_n + b_n, \quad n \geq 0.
\]

Similarly, we deduce that
\[
\|v_n - x^*\| \leq (1 - a_n' - b_n')\|u_n - x^*\| + \theta a_n'\|w_n - x^*\| \\
+ a_n' d_n + b_n' L, \\
\|w_n - x^*\| \leq (1 - a_n'' - b_n'')\|u_n - x^*\| + \theta a_n''\|u_n - x^*\| \\
+ a_n'' d_n + b_n'' L, \quad n \geq 0.
\]

Substituting (4.10) into (4.9), we infer that
\[
\begin{align*}
\|u_{n+1} - x^*\| \\
&\leq [1 - a_n - b_n + a_n\theta(1 - a_n' - b_n') + a_n'\theta(1 - a_n'' - b_n'') \\
&+ a_n''\theta]\|u_n - x^*\| + a_n\theta a_n'(a_n''\theta d_n + \theta Lb_n'' + d_n) \\
&+ \theta Lb_n' + d_n + b_n L \\
&\leq (1 - (1 - \theta)a_n)\|u_n - x^*\| + a_n[a_n'(2d_n + Lb_n'') \\
&+ Lb_n' + d_n] + b_nL, \quad n \geq 0.
\end{align*}
\]

It follows from Lemma 2.3, (3.4), (3.8), (4.11) and one of (3.5) and (3.6) that \(\lim_{n \to \infty} x_n = x^*\).

Now we assume that (4.5) holds. Observe that each of (3.5) and (3.6) implies that
\[
\lim_{n \to \infty} b_n = 0.
\]

As in the proof of (4.9), by (4.5), we conclude that
\[
\begin{align*}
\|(1 - a_n - b_n)\|x_n + a_n(y_n - gy_n + J_\rho^{A\phi_n}(y_n))(Ey_n)\| + b_n p_n - x^*\| \\
&\leq (1 - (1 - \theta)a_n)\|x_n - x^*\| + a_n[a_n'(2d_n + Lb_n'') + Lb_n' + d_n] + b_n L \\
&\leq (1 - (1 - \theta)A)\|x_n - x^*\| + a_n'(2d_n + Lb_n'') \\
&+ Lb_n' + d_n + b_n L, \quad n \geq 0.
\end{align*}
\]
Suppose that $\lim_{n \to \infty} x_n = x^*$. By virtue of (3.4), (4.2), (4.8), (4.13) and one of (3.5) and (3.6), we obtain that

$$
\varepsilon \leq ||x_{n+1} - x^*|| + ||(1 - a_n - b_n)x_n + a_n(y_n - gy_n + J^\phi_n(y_n)(Ey_n)) + b_np_n - x^*||
$$

$$
\leq ||x_{n+1} - x^*|| + (1 - (1 - \theta)A)||x_n - x^*|| + a_n'(2d_n + Lb_n'' + d_n + b_nL \to 0 \text{ as } n \to \infty.
$$

That is, $\lim_{n \to \infty} \varepsilon_n = 0$. Conversely, suppose that $\lim_{n \to \infty} \varepsilon_n = 0$. In light of (4.2) and (4.13), we know that

$$
\|x_{n+1} - x^*\|
\leq \|((1 - a_n - b_n)x_n + a_n(y_n - gy_n + J^\phi_n(y_n)(Ey_n)) + b_np_n - x^*\| + \varepsilon_n
\leq (1 - (1 - \theta)A)||x_n - x^*|| + a_n'(2d_n + Lb_n'')
+ Lb_n' + d_n + b_nL + \varepsilon_n, \quad n \geq 0.
$$

It follows from Lemma 2.1, (4.8), (4.12), (4.14) and one of (3.5) and (3.6) that $\lim_{n \to \infty} x_n = x^*$. This completes the proof. \ □

Remark 4.1. If h is the identity mapping in H and

$$
N(x, y) = x - y, M(x, y) = 0 \text{ for all } x, y \in H
$$

in Theorem 4.1, then Theorem 4.1 generalizes Theorems 3.6~3.8 in [6]. Furthermore, if $\eta(x, y) = x - y$ for all $x, y \in H$, then Theorem 4.1 extends Theorem 3.3 in [4].

Theorem 4.2. Let $a, b, g, h, k, \eta, \phi_n, \{\phi_n\}_{n \geq 0}, \{\varepsilon_n\}_{n \geq 0}$ and $\{x_n\}_{n \geq 0}$ be as in Theorem 4.1. Suppose that c and $d : H \to H$ are Lipschitz continuous with constants λ_c and λ_d, respectively, $N : H \times H \to H$ is relaxed coercive with respect to a in the first argument with constants $\gamma > 0$ and $r > 0$, and Lipschitz continuous in the first and second arguments with constants ξ and $\zeta > 0$, respectively. Assume that $M : H \times H \to H$ is generalized pseudocontractive with respect to c in the first argument with constant ν and Lipschitz continuous in the first and second arguments with constants $\beta > 0$ and $l > 0$, respectively. Let

$$
K = \left(1 + \frac{\tau}{\delta}\right)\sqrt{1 - 2\sigma + \lambda^2} + \frac{\tau^2}{\delta}\sqrt{1 - 2\gamma + \lambda^2} + \mu,
$$

$$
P_l = (\lambda_c \xi + \lambda_c \beta)^2\tau^2 - (\lambda_c \xi + \lambda_c \beta)^2\delta^2,
$$

$$
Q_l = \tau^2[(r - \gamma ln)\lambda^2] - \lambda_c \nu].
$$
If there exists a constant $\rho > 0$ satisfying (4.1), (4.2) and one of the following conditions:

\[P_1 > 0, \]
\[\left(1 - K \right) \left(\lambda_b \xi + \lambda_d \lambda \right) \delta^2 - Q_1 > P_1 \left(\tau^2 - \left(1 - K \right)^2 \delta^2 \right), \]
\[(4.15) \]
\[\left| \rho - \frac{Q_1 - \left(1 - K \right) \left(\lambda_b \xi + \lambda_d \lambda \right) \delta^2}{P_1} \right| < \sqrt{Q_1 - \left(1 - K \right) \left(\lambda_b \xi + \lambda_d \lambda \right) \delta^2} - P_1 \left(\tau^2 - \left(1 - K \right)^2 \delta^2 \right), \]
\[P_1 < 0, \]
\[\left| \rho - \frac{Q_1 - \left(1 - K \right) \left(\lambda_b \xi + \lambda_d \lambda \right) \delta^2}{P_1} \right| > \sqrt{Q_1 - \left(1 - K \right) \left(\lambda_b \xi + \lambda_d \lambda \right) \delta^2} - P_1 \left(\tau^2 - \left(1 - K \right)^2 \delta^2 \right), \]
\[(4.16) \]

then the problem (2.1) has a unique solution $x^* \in H$ and the iterative sequence $\{x_n\}_{n \geq 0}$ defined by Algorithm 3.1 converges strongly to x^*. Moreover, if there exists a constant $A > 0$ satisfying (4.5), then $\lim_{n \to \infty} x_n = x^*$ if and only if $\lim_{n \to \infty} \varepsilon_n = 0$.

Proof. As in the proof of Theorem 4.1, for any $x, y \in H$, we obtain that

\[\|F x - F y\| \]
\[\leq \|x - y - (gx - gy)\| \]
\[+ \|J^\Delta \phi(x, x) E x - J^\Delta \phi(x, x) E y\| \]
\[+ \|J^\Delta \phi(x, y) E y - J^\Delta \phi(x, y) E y\| \]
\[\leq \left(1 + \frac{\tau}{\delta} \right) \|x - y - (gx - gy)\| \]
\[+ \frac{\tau}{\delta} \|gx - gy - (hx - hy)\| \]
\[+ \frac{\tau}{\delta} \|x - y - \rho(N(ax, bx) - N(ay, by)) \]
\[+ \rho(M(cx, dx) - M(cy, dy))\|\| + \mu \|x - y\| \]
\[\leq \left(1 + \frac{\tau}{\delta} \right) \sqrt{1 - 2\sigma + \lambda^2} \|x - y\| \]
\[+ \frac{\tau}{\delta} \lambda \sqrt{1 - 2\gamma + \lambda^2} \|x - y\| \]
\[+ \frac{\tau}{\delta} \left(\sqrt{1 - 2\rho \left(r - \gamma \lambda^2 \right) - \nu} + \rho^2 \left(\xi \lambda + \lambda \lambda \right)^2 \right) \]
\[+ \rho \lambda \xi + \rho \lambda \lambda \|x - y\| + \mu \|x - y\| \]
\[= \theta_1 \|x - y\|, \]
where
\[\theta_1 = \left(1 + \frac{\tau}{\delta}\right) \sqrt{1 - 2\lambda + \sigma^2} + \frac{\tau}{\delta} \lambda \sqrt{1 - 2\gamma + \lambda^2} \]
\[+ \frac{\tau}{\delta} \left(\sqrt{1 - 2\rho(r - \gamma \lambda a - \lambda c \nu) + \rho^2(\xi \lambda a + \lambda c \beta)^2} \right) \]
\[+ \rho \lambda \zeta + \rho \lambda d + \mu. \]

It follows from one of (4.15) and (4.16) that \(\theta_1 < 1 \). From (4.17) we infer that \(F \) is a contraction mapping in \(H \) and it has a unique fixed point \(x^* \in H \), which is a unique solution of the problem (2.1). Similarly, we can show that
\[\|u_{n+1} - x^*\| \leq (1 - (1 - \theta_1)a_n)\|u_n - x^*\| \]
\[+ a_n[a_n^3(2d_n + Lb_n') + Lb_n' + d_n] + b_n L, \quad n \geq 0. \]

The rest of argument follows as in the proof of Theorem 4.1 and is therefore omitted. This completes the proof. □

Remark 4.2. Theorems 4.1 and 4.2 provide the convergence and stability of iterative sequence generated by Algorithm 3.1 under certain conditions.

References

Shin Min Kang
Department of Mathematics and The Research Institute of Natural Science
Gyeongsang National University
Jinju 660-701, Korea
E-mail address: smkang@nongae.gsnu.ac.kr