ON THE VALUE DISTRIBUTION OF DIFFERENTIAL POLYNOMIALS

SUBHAS S. BHOOSNURMATH, MILIND NARAYANRAO KULKARNI, AND KIT-WING YU

Reprinted from the Bulletin of the Korean Mathematical Society
Vol. 45, No. 3, August 2008

©2008 The Korean Mathematical Society
ON THE VALUE DISTRIBUTION OF DIFFERENTIAL POLYNOMIALS

SUBHAS S. BHOOSNURMATH, MILIND NARAYANRAO KULKARNI, AND KIT-WING YU

Abstract. In this paper we consider the problem of whether certain homogeneous or non-homogeneous differential polynomials in \(f(z) \) necessarily have infinitely many zeros. Particularly, this extends a result of Gopalakrishna and Bhoosnurmath [3, Theorem 2] for a general differential polynomial of degree \(d(P) \) and lower degree \(d(P) \).

1. Introduction

Let \(f(z) \) be a transcendental meromorphic function in the complex plane. It is assumed that the reader is familiar with the usual notations of Nevanlinna theory (See e.g. [4, 9]). We denote by \(S(r, f) \) any quantity satisfying \(S(r, f) = o(T(r, f)) \) as \(r \to +\infty \), possibly outside a set of finite linear measure \(E \). Throughout this paper we denote by \(a_j(z) \) any small meromorphic function satisfying \(T(r, a_j) = S(r, f) \), \(j = 1, 2, \ldots, n \).

Many mathematicians were interested in the value distribution of different expressions of a meromorphic function \(f(z) \) and obtained a lot of fruitful results. In [5], Hayman discussed Picard’s values of a meromorphic function \(f(z) \) and its derivatives. In particular, he showed that

Theorem A. Let \(f(z) \) be a transcendental entire function. Then

(a) for \(n \geq 3 \) and \(a \neq 0 \), \(\Psi(z) = f'(z) - a[f(z)]^n \) assumes all finite values infinitely often;

(b) for \(n \geq 2 \), \(\Psi(z) = f'(z)[f(z)]^n \) assumes all finite values except possibly zero infinitely often.

Later in 1964, Hayman showed further in his monograph [4] that

Theorem B. If \(f(z) \) is meromorphic and transcendental in the plane and has only a finite number of poles and zeros, then every meromorphic function \(\Psi(z) \) of the form \(\Psi(z) = \sum_{i=1}^{n} a_i f^{(i)}(z) \) assumes every finite complex value except possibly zero infinitely often, or else \(\Psi(z) \) is constant.
In 1967, Clunie [2] proved Theorem A(b) for \(n \geq 1 \) and later on Sons [6] generalized Theorem A(b) and in fact, he proved the following result on a monomial in \(f(z) \)

Theorem C. If \(f(z) \) is a transcendental entire function and

\[
\Psi(z) = [f(z)]^{n_0}[f'(z)]^{n_1} \cdots [f^{(k)}(z)]^{n_k},
\]

where \(n_0 \geq 2, n_k \geq 1 \) and \(n_i \geq 0 \) for \(i \neq 0, k \), then \(\delta(a, \Psi) < 1 \) for \(a \neq 0, \infty \).

Moreover if \(N_{(1)}(r, \frac{1}{f}) = S(r, f) \), then for \(n_0 \geq 1 \) the same conclusion holds good, where in \(N_{(1)}(r, \frac{1}{f}) \) we count only simple zeros of \(f(z) \).

Regarding the deficiencies of a monomial in \(f(z) \), Yang [7, 8] further generalized Theorem C to meromorphic functions as follows

Theorem D. Let \(f \) be transcendental meromorphic with

\[
(1) \quad N(r, f) + N \left(r, \frac{1}{f}\right) = S(r, f)
\]

and \(\Psi(z) = \sum a(z)[f(z)]^{p_0}[f'(z)]^{p_1} \cdots [f^{(k)}(z)]^{p_k} \) with no constant term. If the degree \(n \) of the homogeneous differential polynomial \(\Psi(z) \) is greater than one and \(p_0 < n, 0 \leq p_i \leq n \) for \(i \neq 0 \), then \(\delta(a, \Psi) < 1 \) for all \(a \neq 0, \infty \).

Theorem E. Let \(f(z) \) and \(\Psi(z) \) be as in Theorem D and all the terms of \(\Psi(z) \) have different degrees at least two, i.e., \(\Psi(z) \) is non-homogeneous. Then we have \(\delta(a, \Psi) \leq 1 - \frac{1}{2n} \) for \(a \neq \infty \).

Independently, by generalizing Theorem B as Gopalakrishna and Bhosnurmath’s goal, they actually obtained a result which was a generalization of Theorem D above and the argument they used is much simpler and elegant than that of Yang applied. In fact, they proved the following

Theorem F ([3, Theorem 2]). Let \(f(z) \) be a transcendental meromorphic function satisfying (1) and let \(P[f] \) be a homogeneous differential polynomial in \(f(z) \). If \(P[f] \) does not reduce to a constant, then \(\delta(a, P[f]) = 0 \) for \(a \neq 0, \) i.e., \(P[f] \) assumes all finite complex values except possibly zero infinitely often.

In this paper, two results are proved. In Theorem 1, we try to obtain bounds for

\[
\lim_{r \to +\infty} \frac{T(r, P[f])}{T(r, f)} \quad \text{and} \quad \lim_{r \to +\infty} \frac{T(r, P[f])}{T(r, f)},
\]

where \(P[f] \) is a differential polynomial in \(f(z) \). Then as a consequence we can obtain the result of Theorem F as a special case of Theorem 2.
2. Definitions and lemmas

For a positive integer \(j\), by a monomial in \(f(z)\) we mean an expression of the type
\[
M_j[f] = a_j(z)[f(z)]^{n_{0j}}[f'(z)]^{n_{1j}} \cdots [f^{(k)}(z)]^{n_{kj}},
\]
where \(n_{0j}, n_{1j}, \ldots, n_{kj}\) are non-negative integers. We define
\[
d(M_j) = \sum_{i=0}^{k} i n_{ij}
\]
as the degree of \(M_j[f]\) and
\[
\Gamma_{M_j} = \sum_{i=0}^{k} (i+1) n_{ij}
\]
as the weight of \(M_j[f]\).

Next, a differential polynomial in \(f(z)\) is a finite sum of such monomials, i.e.,
\[
P[f] = \sum_{j=1}^{n} a_j(z) M_j[f].
\]

We define
\[
\overline{d}(P) = \max_{1 \leq j \leq n} \{d(M_j)\}, \quad \underline{d}(P) = \min_{1 \leq j \leq n} \{d(M_j)\} \quad \text{and} \quad \Gamma_P = \max_{1 \leq j \leq n} \{\Gamma_{M_j}\}
\]
as the degree, the lower degree and the weight of \(P[f]\) respectively. If, in particular, \(\overline{d}(P) = \underline{d}(P)\), then \(P[f]\) is called homogeneous and non-homogeneous otherwise.

Lemma 1 ([1]). Let \(f(z)\) be a meromorphic function and \(P[f]\) be a differential polynomial with coefficient \(a_j(z)\) and degree \(\overline{d}(P)\) and lower degree \(\underline{d}(P)\). Then
\[
m \left(r, \frac{P[f]}{\overline{d}(P)} \right) \leq [\overline{d}(P) - \underline{d}(P)] m \left(r, \frac{1}{r} \right) + S(r, f).
\]

Lemma 2 ([4, Lemma of the logarithmic derivatives]). Let \(f(z)\) be meromorphic and non-constant in the plane. Then there are positive constants \(C_1\) and \(C_2\) such that
\[
m \left(r, \frac{f'}{f} \right) \leq C_1 \log r + C_2 \log T(r, f)
\]
as \(r\) tends to infinity outside possibly a set \(E\) of finite measure.

Consequently, Lemma 2 implies the famous result
\[
m \left(r, \frac{f^{(k)}}{f} \right) = S(r, f)
\]
for any positive integer \(k\) (See [4, Theorem 3.1]).

Lemma 3. Let \(f(z)\) be a meromorphic function with a pole of order \(p \geq 1\) at \(z_0\). If \(P[f]\) is a differential polynomial in \(f(z)\) whose coefficient are analytic at \(z_0\), then \(P[f]\) has a pole at \(z_0\) of order at most \(p \overline{d}(P) + \Gamma_P - \overline{d}(P)\).
Proof. Now $P[f]$ is a sum of terms of the form $a_jf^{n_{0j}}(f')^{n_{1j}}\cdots(f^{(k)})^{n_{kj}}$ where a_j is analytic at z_0. If this term has a pole at z_0, then its order is at most

$$\max_{1 \leq j \leq n} \left\{ \sum_{s=0}^{k} (p+s)n_{sjj} \right\}$$

$$= \max_{1 \leq j \leq n} \left\{ (p-1) \sum_{s=0}^{k} n_{sjj} + (n_{0j} + 2n_{1j} + \cdots + (k+1)n_{kj}) \right\}$$

$$\leq (p-1)\overline{d}(P) + \Gamma P$$

$$\leq \overline{d}(P) + \Gamma P - \overline{d}(P),$$

completing the proof of the lemma. □

3. Our main results

Theorem 1. Let $f(z)$ be a transcendental meromorphic function satisfying condition (1) and let $P[f]$ be a differential polynomial in $f(z)$ of degree $\overline{d}(P)$ and lower degree $d(P)$. Then

$$d(P) \leq \lim_{r \to +\infty} \frac{T(r,P[f])}{T(r,f)} \leq \lim_{r \to +\infty} \frac{T(r,P[f])}{T(r,f)} \leq 2\overline{d}(P) - d(P).$$

Proof. The poles of $P[f]$ can occur only at the poles of f or at the poles of the coefficients a_j of $P[f]$. As $T(r,a_j) = S(r,f)$, we can ignore the poles of the coefficients a_j.

At z_0, a pole of f of order p, it is easily seen from Lemma 3 that $P[f]$ has a pole z_0 of order at most $p\overline{d}(P) + \Gamma P - \overline{d}(P)$. Hence we have

$$N(r,P[f]) \leq \overline{d}(P)N(r,f) + [\Gamma P - \overline{d}(P)]N(r,f) + S(r,f)$$

and then this and the assumption (1) give

$$N\left(r, \frac{P[f]}{\overline{d}(P)}\right) \leq N(r,P[f]) + N\left(r, \frac{1}{\overline{f}(P)}\right)$$

$$\leq [\Gamma P - \overline{d}(P)]N(r,f) + \overline{d}(P)\left[N(r,f) + N\left(r, \frac{1}{f}\right)\right] + S(r,f)$$

(3)

On the one hand, it follows from (3), Lemma 1 and then the first fundamental theorem that

$$T\left(r, \frac{P[f]}{\overline{d}(P)}\right) \leq T\left(r, \frac{P[f]}{\overline{d}(P)}\right) + T\left(r, \overline{d}(P)\right)$$

$$\leq m\left(r, \frac{P[f]}{\overline{d}(P)}\right) + \overline{d}(P)T(r,f)$$

$$\leq [\overline{d}(P) - d(P)] m\left(r, \frac{1}{f}\right) + \overline{d}(P)T(r,f) + S(r,f)$$

(4)
\[
\leq [\overline{d}(P) - \underline{d}(P)] T\left(r, \frac{1}{f}\right) + \overline{d}(P) T(r, f) + S(r, f)
\]
\[
= [2\overline{d}(P) - \underline{d}(P)] T(r, f) + S(r, f).
\]

Thus inequality (4) implies that
\[
(5) \quad \lim_{r \to +\infty} \frac{T(r, P[f])}{T(r, f)} \leq 2\overline{d}(P) - \underline{d}(P).
\]

On the other hand, we also have from the first fundamental theorem, (3) and then Lemma 1 the following
\[
\overline{d}(P) T(r, f) \leq T\left(r, \frac{\overline{d}(P)}{P[f]}\right) + T(r, P[f])
\]
\[
\leq T\left(r, \frac{P[f]}{\overline{d}(P)}\right) + T(r, P[f]) + O(1)
\]
\[
\leq T(r, P[f]) + [\overline{d}(P) - \underline{d}(P)] m\left(r, \frac{1}{f}\right) + S(r, f)
\]
\[
\leq T(r, P[f]) + [\overline{d}(P) - \underline{d}(P)] T(r, f) + S(r, f)
\]
\[
(6) \quad \underline{d}(P) T(r, f) \leq T(r, P[f]) + S(r, f).
\]

Thus inequality (6) implies that
\[
(7) \quad \underline{d}(P) \leq \lim_{r \to +\infty} \frac{T(r, P[f])}{T(r, f)}.
\]

Hence by inequalities (5) and (7) we get
\[
\underline{d}(P) \leq \lim_{r \to +\infty} \frac{T(r, P[f])}{T(r, f)} \leq \lim_{r \to +\infty} \frac{T(r, P[f])}{T(r, f)} \leq 2\overline{d}(P) - \underline{d}(P),
\]
completing the proof of the theorem. \(\square\)

Remark 1. In particular, if the given differential polynomial is homogenous, i.e., \(\overline{d}(P) = \underline{d}(P) = n\) for some positive integer \(n\), then we obtain
\[
n \leq \lim_{r \to +\infty} \frac{T(r, P[f])}{T(r, f)} \leq \lim_{r \to +\infty} \frac{T(r, P[f])}{T(r, f)} \leq n,
\]
so that
\[
\lim_{r \to +\infty} \frac{T(r, P[f])}{T(r, f)} = n,
\]
outside possibly a set \(E\) of finite linear measure. In other words, we have
\[
(8) \quad T(r, P[f]) = nT(r, f) + O(1)
\]
as \(r \to +\infty\) outside possibly a set \(E\) of finite linear measure in this case.
Theorem 2. Let $f(z)$ be a transcendental meromorphic function satisfying the assumption (1) and let $P[f]$ be a differential polynomial in $f(z)$ of degree $\overline{d}(P)$ and lower degree $\underline{d}(P)$. Suppose that $P[f]$ does not reduce to a constant.

(a) If $P[f]$ is a homogeneous differential polynomial, then we have

$$\delta(a, P[f]) = 0$$

for any $a \neq 0$, i.e., $P[f]$ assumes all finite complex values except possibly zero infinitely often.

(b) If $P[f]$ is a non-homogeneous differential polynomial with $2\overline{d}(P) > \underline{d}(P)$, then we have

$$\delta(a, P[f]) \leq 1 - \frac{2\overline{d}(P) - \underline{d}(P)}{\overline{d}(P)} < 1$$

for any $a \neq 0$, i.e., $P[f]$ assumes all finite complex values except possibly zero infinitely often.

Proof. By Theorem 1, we see that small functions of f are small functions of $P[f]$ and small functions of $P[f]$ are also small functions of f, i.e.,

$$S(r, f) = S(r, P[f]).$$

By (9), it follows from assumption (1) and inequality (2) that

$$N(r, P[f]) = S(r, P[f]).$$

We also have

$$\overline{N} \left(r, \frac{1}{P[f]} \right) \leq \overline{N} \left(r, \frac{1}{f^{\overline{d}(P)}} \right) + \overline{N} \left(r, \frac{f^{\underline{d}(P)}}{P[f]} \right)$$

$$\leq \overline{N} \left(r, \frac{1}{f} \right) + T \left(r, \frac{f^{\underline{d}(P)}}{P[f]} \right)$$

$$\leq \overline{N} \left(r, \frac{1}{f} \right) + T \left(r, \frac{P[f]}{f^{\underline{d}(P)}} \right) + O(1).$$

Now Lemma 1, inequalities (3) and (9) imply that

$$T \left(r, \frac{P[f]}{f^{\underline{d}(P)}} \right) = m \left(r, \frac{P[f]}{f^{\underline{d}(P)}} \right) + N \left(r, \frac{P[f]}{f^{\underline{d}(P)}} \right)$$

$$\leq [\overline{d}(P) - \underline{d}(P)] m \left(r, \frac{1}{f} \right) + S(r, f)$$

$$= [\overline{d}(P) - \underline{d}(P)] m \left(r, \frac{1}{f} \right) + S(r, P[f]).$$

Hence using (11), inequality (10) can be written as

$$\overline{N} \left(r, \frac{1}{P[f]} \right) \leq \overline{N} \left(r, \frac{1}{f} \right) + [\overline{d}(P) - \underline{d}(P)] m \left(r, \frac{1}{f} \right) + S(r, P[f]).$$
and by hypothesis (1) and (9), we get

\[N \left(r, \frac{1}{P[f]} \right) \leq \overline{d}(P) - \underline{d}(P) m \left(r, \frac{1}{f} \right) + S \left(r, P[f] \right). \]

If \(b \neq 0 \), then the second fundamental theorem and inequality (12) imply that

\[T \left(r, P[f] \right) \leq N \left(r, P[f] \right) + N \left(r, \frac{1}{P[f] - b} \right) + S \left(r, P[f] \right). \]

We have the following two cases.

Case (a): If \(P[f] \) is a homogeneous differential polynomial, i.e., \(\overline{d}(P) = \underline{d}(P) \) then by the above inequality (13) we obtain

\[T \left(r, P[f] \right) \leq N \left(r, \frac{1}{P[f] - b} \right) + S \left(r, P[f] \right), \]

but it follows from (8) that \(P[f] \) is a transcendental meromorphic function and then this relation and inequality (14) imply (a).

Case (b): By Theorem 1, we still have \(\overline{d}(P) T(r, f) \leq T(r, P[f]) + S(r, f) \) for all sequences of \(r \) tending to \(+\infty\) outside possibly a set \(E \) of finite linear measure. If \(P[f] \) is a non-homogeneous differential polynomial with \(2\overline{d}(P) > \underline{d}(P) \), then we obtain from inequality (13) that

\[T \left(r, P[f] \right) \leq \left[\overline{d}(P) - \underline{d}(P) \right] m \left(r, \frac{1}{f} \right) + N \left(r, \frac{1}{P[f] - b} \right) + S \left(r, P[f] \right). \]

Since \(2\overline{d}(P) > \overline{d}(P) \), the desired result follows and thus we complete the proof of Theorem 2.

\[\square \]

4. Further remarks

In this section, a few remarks will be given concerning the question we consider in this paper.

Remark 2. Our Theorem 2 is much more general than that of Gopalakrishna and Bhoosnurmath [3, pp. 334–335] because they obtained the inequality (14) for homogeneous \(P[f] \) only, but the main inequality we obtain here is (13) which works for any, homogeneous or non-homogeneous, differential polynomial \(P[f] \).
Remark 3. The following example shows that the condition $2d(P) > \bar{d}(P)$ cannot be dropped from Theorem 2(b).

Example 1. Let

$$f(z) = e^z \quad \text{and} \quad P[f] = f^2(z) + af(z) - af'(z) + 1$$

for any complex number a. Then we have $\bar{d}(P) = 2$ and $d(P) = 0$. However, $P[f] - 1 = e^z \neq 0$ for any z and hence

$$\delta(1, P[f]) = 1.$$

Remark 4. We note that the condition (1) was used heavily in the proofs of Theorems D to F, and our two theorems here. In the remark made in [7, p. 201], Yang noted that Theorem D is also valid when the condition (1) is replaced by the weaker condition

$$(15) \quad N_1(r, f) + N_1\left(r, \frac{1}{f}\right) = S(r, f),$$

where $N_1(r, f)$ and $N_1\left(r, \frac{1}{f}\right)$ denote the counting functions of simple poles and simple zeros of $f(z)$ in $|z| \leq r$ respectively.

However, Yang [8] and Gopalakrishna and Bhoosnurmath [3] did not say whether Theorems E and F were still valid under the condition (15). Hence it is natural to conjecture that

Conjecture. Theorems 1 and 2 hold good even under the weaker condition (15).

Acknowledgement. The second author thanks the University Grants Commission for the award of Teacher Fellowship under Faculty Improvement Programme.

References

Subhas S. Bhoosnurmath
Department of Mathematics
Karnatak University
Dharwad, India
E-mail address: ssbmath@yahoo.com

Milind Narayanrao Kulkarni
Department of Mathematics
Karnatak University
Dharwad, India
E-mail address: meelind2000@yahoo.co.in

Kit-Wing Yu
Department of Mathematics
United Christian College
11, Tong Yam Street
Kowloon, Hong Kong, China
E-mail address: makwing@ust.hk or kitwing@hotmail.com