ON INJECTIVITY AND P-INJECTIVITY

GUANGSHI XIAO AND WENTING TONG

Abstract. The following results are extended from P-injective rings to AP-injective rings: (1) R is left self-injective regular if and only if R is a right (resp. left) AP-injective ring such that for every finitely generated left R-module M, $R(M/Z(M))$ is projective, where $Z(M)$ is the left singular submodule of RM; (2) if R is a left nonsingular left AP-injective ring such that every maximal left ideal of R is either injective or a two-sided ideal of R, then R is either left self-injective regular or strongly regular. In addition, we answer a question of Roger Yue Chi Ming [13] in the positive. Let R be a ring whose every simple singular left R-module is YJ-injective. If R is a right MI-ring whose every essential right ideal is an essential left ideal, then R is a left and right self-injective regular, left and right V-ring of bounded index.

1. Introduction

Throughout this paper, a ring R denotes an associative ring with identity and all modules are unitary. A ring R is called (von Neumann) regular if for any $a \in R$, there exists $b \in R$ such that $a = aba$; R is called strongly regular if for any $a \in R$, there exists $b \in R$ such that $a = a^2b$. We write J and $Z(R)$ for the Jacobson radical of R and the left singular ideal of R respectively. $l(X), r(X)$ denote respectively the left and the right annihilator of X in R. If $X = \{a\}$, we will write it for $l(a), r(a)$. For a left R-module M, $Z(M) = \{z \in M \mid l(z)$ is an essential left ideal of $R\}$ is called the left singular submodule of M. M is called left nonsingular (resp. singular) if $Z(M) = 0$ (resp. $Z(M) = M$).

The concept of P-injective modules was introduced in 1974 to study von Neumann regular rings, V-rings, self-injective rings and their generalizations (see [6], [7]). This was generalized to YJ-injective modules and AP-injective modules. It is well-known that von Neumann regular
rings are P-injective since all left (right) modules are P-injective (see [6]). We are thus motivated to study P-injective modules over rings which are not necessarily von Neumann regular.

Let R be a ring. A right R-module M is called P-injective [6] if every right R-homomorphism from any principal right ideal aR to M extends to one from R_R to M; R is called right P-injective if the right R-module R_R is P-injective. A right R-module M is called right P-injective if the right R-module R_R is P-injective; Similarly, we may define left YJ-injective rings. A module M_R is said to be almost principally injective (or AP-injective for short) [3] if, for any $a \in R$, there exists an S-submodule X_a of M such that $l_M(r_R(a)) = Ma \oplus X_a$ as left S-modules, where $S = \text{End}(M)$. If R_R is an AP-injective module, then R is called a right AP-injective ring. Thus, R is right AP-injective if and only if, for any $a \in R$, there exists a left ideal L_a of R such that $l(r(a)) = Ra \oplus L_a$. It is well known that R is right P-injective if and only if $l(r(a)) = Ra$ for any $a \in R$ (see [2]), which implies that P-injective rings are AP-injective. But AP-injective rings need not be neither P-injective nor YJ-injective by [3, Example 1.5].

In this paper, we extend the following results from P-injective rings to AP-injective rings:

1. R is left continuous regular if and only if R is a right (resp. left) AP-injective ring such that for every cyclic left R-module M, $r(M/Z(M))$ is projective;

2. R is left self-injective regular if and only if R is a right (resp. left) AP-injective ring such that for every finitely generated left R-module M, $r(M/Z(M))$ is projective;

3. If R is a left nonsingular left AP-injective ring such that every maximal left ideal of R is either injective or a two-sided ideal of R, then R is either left self-injective regular or strongly regular. We answer a question of Roger Yue Chi Ming [13] in the positive and prove the following facts:

1. If R is a ring whose every simple singular left R-module is YJ-injective and every essential right ideal is an essential left ideal, then R is von Neumann regular;

2. If R is right MI-ring whose every simple singular left R-module is YJ-injective and every essential right ideal is an essential left ideal,
then \(R \) is a left and right self-injective regular, left and right \(V \)-ring of bounded index.

2. Main results

It has been demonstrated in [13, Page 230] that if \(R \) is left nonsingular, then (1) \(Z(M) \) is injective for every injective left \(R \)-module \(M \) and (2) for any complement left ideal \(C \) of \(R \), \(Z(R/C) = 0 \). A ring \(R \) is said to be left continuous (Y. Utumi [4]) if (1) every left ideal of \(R \) isomorphic to a direct summand of \(R \) is a direct summand of \(R \) and (2) every complement left ideal of \(R \) is a direct summand of \(R \). Thus, if \(R \) is left continuous, then \(J = Z(R) \) and \(R/Z(R) \) is von Neumann regular. By [5, Proposition 3.3], we have the following fact which will be needed.

Lemma 2.1. If \(R \) is left AP-injective, then any left ideal isomorphic to a direct summand of \(R \) is a direct summand of \(R \).

Proposition 2.2. The following are equivalent for a ring \(R

(1) \(R \) is left continuous regular;
(2) \(R \) is a right AP-injective ring such that for every cyclic left \(R \)-module \(M \), \(R(M/Z(M)) \) is projective;
(3) \(R \) is a left AP-injective ring such that for every cyclic left \(R \)-module \(M \), \(R(M/Z(M)) \) is projective.

Proof. (1) \(\Rightarrow \) (2) and (1) \(\Rightarrow \) (3). By [13, Theorem 13] and all regular rings are both left and right AP-injective.

(2) \(\Rightarrow \) (1). By assumption, \(R/Z(R) \) is projective which implies \(Z(R) \) is a direct summand of \(R \), whence \(Z(R) = 0 \) (since \(Z(R) \) contains no non-zero idempotent elements). Then for every complement left ideal \(K \) of \(R \), \(Z(R/K) = 0 \). By assumption again, the left \(R \)-module \(R/K \) is projective which implies \(R \) is a direct summand of \(R \). Since \(R \) is right AP-injective, there exists a left ideal \(L \) of \(R \) such that \(l(r(a)) = Ra \oplus L \). Note that \(Z(R) = 0 \), which implies that \(l(r(a)) \) is a complement left ideal of \(R \) and hence \(l(r(a)) \) is a direct summand of \(R \). This shows that \(Ra \) is a direct summand of \(R \). Therefore, \(R \) is left continuous regular.

(3) \(\Rightarrow \) (1). By Lemma 2.1 and apply the proof in “(2) \(\Rightarrow \) (1)”.

The following result give a characterization of left self-injective regular rings and extends [13, Theorem 14].
Theorem 2.3. The following are equivalent for a ring R:

1. R is left self-injective regular;
2. R is a right AP-injective ring such that for every finitely generated left R-module M, $R(M/Z(M))$ is projective;
3. R is a left AP-injective ring such that for every finitely generated left R-module M, $R(M/Z(M))$ is projective.

Proof. (1) \Rightarrow (2) and (1) \Rightarrow (3). By [13, Theorem 14] and all regular rings are both left and right AP-injective.

(2) \Rightarrow (1). By assumption and Proposition 2.2, R is left continuous regular. Denote RE as the injective hull of RR. For any $u \in E$, $B = R + Ru$ is a finitely generated nonsingular left R-module. By our assumption, RB is projective. Since the left annihilator of any proper finitely generated right ideal of R is nonzero, by a well-known theorem of H. Bass, RB is a direct summand of RE. But RB is essential in RE which implies $R = B$. This proves that $R = E$ is left self-injective regular.

(3) \Rightarrow (1). As the proof in “(2) \Rightarrow (1)” and by Proposition 2.2, we may complete our proof.

Recall that a ring R is called reduced if it contains no non-zero nilpotent elements. It is well-known that a reduced left P-injective ring is strongly regular. By [10, Proposition 1(2)], if R is a reduced left YJ-injective ring, then R is strongly regular. Now, we have the same result for left AP-injective rings.

Lemma 2.4. If R is a reduced left AP-injective ring, then R is strongly regular.

Proof. For any $0 \neq a \in R$, $l(a) = l(a^2)$ by assumption. Thus there exists a right ideal L of R such that

$a \in r(l(a)) = r(l(a^2)) = a^2R \oplus L.$

Then $a = a^2r + x$ for some $r \in R$, $x \in L$, which implies $a^2 - a^2ra = xa \in a^2R \cap L = 0$. Hence $a^2 = a^2ra$, so $a = a^2r$ since R is reduced. This proves that R is strongly regular.

By [3, Corollary 2.3], the following result is immediate.

Lemma 2.5. If R is a left AP-injective ring, then $J = Z(R)$.

A ring R is called a left (resp. right) MI-ring [12] if R contains an injective left (resp. right) ideal. In [12], R. Yue Chi Ming gave an example, in which R is an MI-ring and not left self-injective. The following result extends [13, Proposition 11].
Proposition 2.6. Let R be a left nonsingular left AP-injective ring such that every maximal left ideal is either injective or an ideal of R. Then R is either left self-injective or strongly regular.

Proof. Since R is a left AP-injective ring, by Lemma 2.5, $J = Z(R) = 0$. First suppose that every maximal left ideal of R is an ideal of R. Since $J = 0$, by [13, Lemma 2], R is reduced. Thus R is strongly regular by Lemma 2.4. Now suppose there exists a maximal left ideal M of R which is not an ideal. By assumption, M is left injective and R is a left MI-ring. Note that R is semiprime, thus eR is a minimal right ideal of R if and only if Re is a minimal left ideal of R. By [13, Lemma 10], R is left self-injective. Thus R is regular since $J = 0$.

In general, if R is a ring whose every simple singular left R-module is YJ-injective, then $J \cap Z(R) = 0$ (cf. [8, Proposition 3]). In [13], Yue Chi Ming raised a question: is it true that $J \cap Z(R) = 0$ if every simple singular left R-module is YJ-injective? Now, we answer it in the positive. Let’s start with the following lemma.

Lemma 2.7. If R is a ring whose every simple singular left R-module is YJ-injective, then $J \cap Z(R)$ contains no nonzero nilpotent elements.

Proof. Take any $b \in J \cap Z(R)$ with $b^2 = 0$. If $b \neq 0$, then $l(b) + RbR$ is an essential left ideal of R. We will prove that $l(b) + RbR = R$. If not, there exists a maximal essential left ideal M of R containing $l(b) + RbR$. By assumption, the simple singular left R-module R/M is YJ-injective, thus there exists a positive n such that $b^n \neq 0$ and every left R-homomorphism from Rb^n to R/M extends to one from Rb^n to R/M. Therefore $n = 1$ and every left R-homomorphism from Rb to R/M extends to one from Rb to R/M. Since $l(b) \subseteq M$, the left R-homomorphism $f : Rb \to R/M$ by $f(rb) = r + M$ is well defined. Since R/M is left YJ-injective, there exists $c \in R$ such that $1 + M = bc + M$. Note that $bc \in RbR \subseteq M$, which implies $1 \in M$, it is a contradiction. This proves that $l(b) + RbR = R$ and hence $b = db$ for some $d \in RbR \subseteq J$. This implies $b = 0$, which is required contradiction.

Lemma 2.8. If R is a ring whose every simple singular left R-module is YJ-injective, then for any $b \in J \cap Z(R)$, $l(b^n) = l(b)$ for any positive integer $n > 1$.

Proof. Take any $x \in l(b^n)$. Then $xb^n = 0$, and thus $(b^{n-1}xb^{n-1})^2 = 0$. Note that $b^{n-1}xb^{n-1} \in J \cap Z(R)$, so $b^{n-1}xb^{n-1} = 0$ by Lemma 2.7. This implies $(xb^{n-1})^2 = 0$, by Lemma 2.7, and thus $xb^{n-1} = 0$ since
$xb_n^{-1} \in J \cap Z(R)$. This proves that \(x \in l(b_n^{-1}) \) and \(l(b^n) = l(b_n^{-1}) \). By
induction, \(l(b^n) = l(b) \) for any positive integer \(n > 1 \).

Theorem 2.9. If \(R \) is a ring whose every simple singular left \(R \)-module is \(YJ \)-injective, then \(J \cap Z(R) = 0 \).

Proof. Take any \(b \in J \cap Z(R) \). If \(b \neq 0 \), then \(l(b) \neq R \) and \(l(b) + RbR \) is an essential left ideal of \(R \). We will prove \(l(b) + RbR = R \). If not, as the proof in Lemma 2.7, there exist a maximal essential left ideal \(M \) of \(R \) containing \(l(b) + RbR \) and a positive integer \(n \) such that \(b^n \neq 0 \) and every left \(R \)-homomorphism from \(Rb^n \) to \(R/M \) extends to one from \(R \) to \(R/M \). Since \(l(b) \subseteq M \), so \(l(b^n) \subseteq M \) by Lemma 2.8. Thus the left \(R \)-homomorphism \(f : Rb^n \to R/M \) by \(f(rb^n) = r + M \) is well defined. Since the simple singular left \(R \)-module \(R/M \) is \(YJ \)-injective, there exists \(c \in R \) such that \(1 + M = b^n c + M \). Note that \(b^n c \in RbR \subseteq M \), which implies \(1 \in M \), it is a contradiction. This proves that \(l(b) + RbR = R \) and hence \(b = db \) for some \(d \in RbR \subseteq J \). This implies \(b = 0 \), which is required contradiction.

If \(R \) is a ring whose every simple left \(R \)-module is \(YJ \)-injective, then \(J = 0 \). But the result need not be true for a ring whose every simple singular left \(R \)-module is \(P \)-injective.

The following example shows that there exists a ring whose every simple singular left \(R \)-module is \(P \)-injective with \(J \neq 0 \), and thus the ring \(R \) is a ring whose every simple singular left \(R \)-module is \(YJ \)-injective with \(J \neq 0 \).

Example 2.10. Let \(R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix} \), where \(F \) is a field. Then \(J(R) \neq 0 \). Note that \(M = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix} \) is the unique maximal essential left ideal. Since \(M \) is an ideal and the right \(R \)-module \(R/M \) is flat, so the simple singular left \(R \)-module \(R/M \) is \(P \)-injective. Thus \(R \) is a ring whose every simple singular left \(R \)-module is \(P \)-injective with \(J \neq 0 \).

Proposition 2.11. If \(R \) is a ring whose every simple singular left \(R \)-module is \(YJ \)-injective, then \(J \) contains no nonzero nilpotent elements if and only if \(J = 0 \).

Proof. Assume \(J \) contains no nonzero nilpotent elements. Write \(L = Rb + l(b) \) for any \(b \in J \). If \(L = R \), then there exists \(a \in R, c \in l(b) \) such that \(1 = ab + c \). Hence \(a = ab^2 \) and \((b - bab)^2 = 0 \), which implies \(b = bab \) since \(b - bab \in J \). Let \(e = ab \), then \(e^2 = e \in J \), which implies \(e = 0 \) and \(b = 0 \). If \(L \neq R \), then there exists a left ideal \(K \) of \(R \) such
that \(L \oplus K \) is an essential left ideal of \(R \). We claim that \(L \oplus K = R \).
If not, there is a maximal essential left ideal \(M \) of \(R \) containing \(L \oplus K \).
By assumption, the simple singular left \(R \)-module \(R/M \) is \(YJ \)-injective.
Since \(J \) contains no nonzero nilpotent elements and \(b \in J \), a left \(R \)-homomorphism \(f : Rb^n \to R/M \) by \(f(rb^n) = r + M \) is well defined.
Thus there exists \(c \in R \) such that \(1 - b^n c \in M \). Note that \(b^n c \in J \subseteq M \),
which implies that \(1 \in M \), contradicting with \(M \) is maximal. This
shows that \(L \oplus K = R \). Then \(Rb + l(b) = Re \) with \(e^2 = e \in R \), so
\(b^2 = beb = bab^2 \) for some \(a \in R \). But \(b \in J \), thus \(b = 0 \) by the preceding proof.
This gives that \(J = 0 \). The converse is obvious.

It is well-known that if \(R \) is semiprime, then every essential right ideal of \(R \) which is an ideal of \(R \) must be left essential. But the converse is obviously not true.

Theorem 2.12. If \(R \) is a ring whose every simple singular left \(R \)-module is \(YJ \)-injective and every essential right ideal of \(R \) is an essential left ideal, then \(R \) is von Neumann regular.

Proof. We first prove that \(R \) is a semiprime ring. If not, then there exists \(0 \neq b \in R \) such that \(RbRb = 0 \). Then \(b \in J \). Let \(K \) be a complement right ideal of \(R \) such that \(RbR \oplus K \) is an essential right ideal of \(R \). Then \(Kb \subseteq K \cap RbR = 0 \) which implies \(RbR \oplus K \subseteq l(b) \). By assumption, \(RbR \oplus K \) is an essential left ideal of \(R \), thus \(b \in Z(R) \). This implies \(b \in J \cap Z(R) \), so \(b = 0 \) by Theorem 2.9. It is a contradiction. This proves that \(R \) is a semiprime ring. By [8, Proposition 6], \(R \) is fully left idempotent. By [9, Proposition 9], \(R \) is von Neumann regular since \(R \) is a ring whose every essential right ideal is an ideal.

Lemma 2.13. Let \(R \) be a ring whose every essential right ideal is an essential left ideal with \(J \cap Z(R) = 0 \). If \(J = Z(R_R) \), where \(Z(R_R) \) is the right singular ideal of \(R \), then \(J = 0 \).

Proof. Assume \(J \neq 0 \). Then there exists \(0 \neq b \in J = Z(R_R) \), so \(r(b) \) is an essential right ideal of \(R \). By assumption, \(r(b) \) is an essential left ideal. Thus \(r(b) \cap Rb \neq 0 \), and hence there exists \(a \in R \) such that \(0 \neq ab \in J \) and \(bab = 0 \). Note that \(r(b) \) is an ideal, so \(bRab = 0 \). This implies \(abRab = 0 \). Let \(K \) be a complement right ideal of \(R \) such that \(RabR \oplus K \) is an essential right ideal. As the proof in Theorem 2.12, we have \(ab = 0 \) since \(J \cap Z(R) = 0 \). It is a contradiction. Therefore \(J = 0 \).

Theorem 2.14. Let \(R \) be a right MI-ring whose every essential right ideal is an essential left ideal. If \(R \) is a ring whose every simple singular
left R-module is YJ-injective, then R is a left and right self-injective regular, left and right V-ring, and with bounded index.

Proof. By Theorem 2.9, $J \cap Z(R) = 0$. As the proof in Theorem 2.12, R is semiprime since R is a ring whose every essential right ideal is an essential left ideal. Thus eR is a minimal right ideal of R if and only if Re is a minimal left ideal of R. As the proof in [13, Lemma 10], R is right self-injective. This proves $J = Z(R_R)$ and R/J is regular. By Lemma 2.13, $J = 0$. Therefore R is right self-injective regular.

Let M be a maximal ideal. Then R/M is simple, thus R/M is regular simple since R is regular. Moreover, R/M is a ring whose every maximal essential right ideal is an ideal and every maximal essential left ideal is an ideal. Write $B = R/M$. We will prove $Soc(BB) = B$, where $Soc(BB)$ denote the socle of RB. If not, there exists an maximal left ideal L of B containing $Soc(BB)$ and L is an essential left ideal of B. Thus L is an ideal. But B is a simple ring, so $L = 0$ or $L = B$. It is a contradiction. This proves $Soc(BB) = B$ and hence R/M is Artinian semisimple. By [1, Page 79], R/M is a ring of bounded index. Thus R is left self-injective by [1, Theorem 6.20] and [1, Corollary 6.22].

Acknowledgements. The authors would like to thank the referee for his/her useful advice.

References

On injectivity and P-injectivity

GUANGSHI XIAO, DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS, NANJING 210016, P. R. CHINA
E-mail: xgs01cn@yahoo.com.cn

WENTING TONG, DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, P. R. CHINA
E-mail: wttong@nju.edu.cn