A HIGHER ORDER MONOTONE ITERATIVE SCHEME FOR NONLINEAR NEUMANN BOUNDARY VALUE PROBLEMS

BASHIR AHMAD, UZMA NAZ, AND RAHMAT A. KHAN

Abstract. The generalized quasilinearization technique has been employed to obtain a sequence of approximate solutions converging monotonically and rapidly to a solution of the nonlinear Neumann boundary value problem.

1. Introduction

The method of generalized quasilinearization introduced by Lakshmikantham ([4, 5]) has been successfully employed to obtain a sequence of approximate solutions converging monotonically to a solution of the nonlinear problem, see, for example, [1-3, 6-10]. In this paper, we continue the study of nonlinear Neumann problems addressed in [1] and improve the convergence of a sequence of approximate solutions converging monotonically to a solution of the nonlinear Neumann boundary value problem. In fact, we establish the convergence of order $k(k \geq 2)$.

2. Some basic results

We know that the linear Neumann boundary value problem
\[-u''(t) = \lambda u(t), \quad t \in J = [0, \pi] \]
\[u'(0) = 0, \quad u'(\pi) = 0,\]
has a nontrivial solution if and only if $\lambda = m^2$, $m = 1, 2, ...$ and thus, for $\lambda \neq m^2$ and $\xi(t) \in C[0, \pi]$, the corresponding nonhomogeneous problem
\[-u''(t) - \lambda u(t) = \xi(t), \quad t \in J\]

Received April 1, 2003.
2000 Mathematics Subject Classification: 34A45, 34B15.
Key words and phrases: quasilinearization, mixed boundary conditions, rapid convergence.
has a unique solution
\[u(t) = \int_0^\pi G_\lambda(t, s) \xi(s) ds, \]
where \(G_\lambda \) is the Green’s function of the associated homogeneous problem and is given by
\[
G_\lambda = \begin{cases}
\frac{1}{\sqrt{\lambda} \sin \sqrt{\lambda} \pi} \left\{ \cos[\sqrt{\lambda}(\pi - s)] \cos[\sqrt{\lambda}t], & \text{if } 0 \leq t \leq s \leq \pi \\
\cos[\sqrt{\lambda}s] \cos[\sqrt{\lambda}(\pi - t)], & \text{if } 0 \leq s \leq t \leq \pi
\end{cases}
\]
for \(\lambda > 0 \),
\[
G_\lambda = \frac{1}{\sqrt{-\lambda} \sinh \sqrt{-\lambda} \pi} \begin{cases}
\cosh[\sqrt{-\lambda}(\pi - s)] \cosh[\sqrt{-\lambda}t], & \text{if } 0 \leq t \leq s \leq \pi \\
\cosh[\sqrt{-\lambda}s] \cosh[\sqrt{-\lambda}(\pi - t)], & \text{if } 0 \leq s \leq t \leq \pi
\end{cases}
\]
for \(\lambda < 0 \). We observe that \(G_\lambda \geq 0 \) for \(\lambda < 0 \). Now, we consider the nonlinear Neumann problem
\[
(1) \quad -u''(t) = f(t, u(t)), \quad t \in J \\
u'(0) = 0, \quad u'(\pi) = 0,
\]
where \(f : J \times R \to R \) is continuous. The problem (1) is equivalent to the integral equation
\[
(2) \quad u(t) = u(0) - \int_0^t (t - s)f(s, u(s)) ds
\]
with
\[
(3) \quad \int_0^t f(s, u(s)) ds = 0.
\]
We shall say that \(\alpha(t) \in C^2[J] \) is a lower solution of (1) if
\[
-\alpha''(t) \leq f(t, \alpha(t)), \quad t \in J \\
\alpha'(0) \geq 0, \quad \alpha'(-\pi) \leq 0,
\]
and \(\beta \in C^2[J] \) is an analogue upper solution of (1) if
\[
-\beta''(t) \geq f(t, \beta(t)), \quad t \in J \\
\beta'(0) \leq 0, \quad \beta'(\pi) \geq 0.
\]
The following theorem plays a crucial role in the forthcoming analysis.
and for its proof, see reference [11].

Theorem 1. Let $\alpha, \beta \in C^2[J, R]$ be lower and upper solutions of (1) respectively such that $\alpha(t) \leq \beta(t)$ on J. Then there exists a solution $u(t)$ of (1) such that $\alpha(t) \leq u(t) \leq \beta(t)$, $t \in J$.

3. Higher order monotone iterative scheme

Theorem 2. Assume that

$\text{(B}_1\text{)}$ $\alpha, \beta \in C^2[J, R]$ such that $\alpha(t) \leq \beta(t)$ on J are lower and upper solutions of (1) respectively.

$\text{(B}_2\text{)}$ $\frac{\partial f}{\partial u}(t, u), \ i = 1, 2, 3, ..., k$ exist and are continuous on $\Omega = \{(t, u) \in J \times R \}$ such that $\frac{\partial f}{\partial u}(t, u) < 0$, $\frac{\partial^{k+} f(t, u) + \phi(t, u)}{\partial u^k(t, u) \geq 0}$ for some function $\phi \in C^{0,k}[J \times R, R]$ such that $\frac{\partial^{k} \phi}{\partial u^k}(t, \xi) \leq 0$.

Then there exists a monotone nondecreasing sequence $\{\mu_n\}$ of solutions which converges uniformly to a solution of (1) with the order of convergence k ($k \geq 2$).

Proof. Set

$$\phi(t, u) = F(t, u) - f(t, u), \quad t \in J.$$

Using (B2) and generalized mean value theorem, we have

$$f(t, u) \geq \sum_{i=0}^{k-1} \frac{\partial^{i} F}{\partial u^{i}}(t, v) \frac{(u - v)^i}{(i)!} - \phi(t, u),$$

where $\alpha(t) \leq v(t) \leq u(t) \leq \beta(t)$. Now, we define

$$K(t, u, v) = \sum_{i=0}^{k-1} \frac{\partial^{i} F}{\partial u^{i}}(t, v) \frac{(u - v)^i}{(i)!} - \phi(t, u),$$

$$= \sum_{i=0}^{k-1} \frac{\partial^{i} f}{\partial u^{i}}(t, v) \frac{(u - v)^i}{(i)!} - \frac{\partial^{k} \phi}{\partial u^k}(t, \xi) \frac{(u - v)^k}{(k)!},$$

where $\alpha \leq v \leq u \leq \beta$ on J.

Observe that

$$K(t, u, v) \leq f(t, u), \quad K(t, u, u) = f(t, u).$$

Now, set $\mu_o = \alpha$ and consider the problem

$$-u''(t) = K(t, u(t), \mu_o(t)), \quad t \in J$$

$$u'(0) = 0, \quad u'(\pi) = 0.$$
Using \((B_1)\) and \((4)\), we get
\[
-\mu''(t) \leq f(t, \mu_o(t)) = K(t, \mu_u(t), \mu_o(t)), \quad t \in J \\
\mu'_o(0) \geq 0, \quad \mu'_o(\pi) \leq 0,
\]
and
\[
-\beta''(t) \geq f(t, \beta(t)) \geq K(t, \beta, \mu_o), \quad t \in J \\
\beta'(0) \leq 0, \quad \beta'(\pi) \geq 0,
\]
which imply that \(\mu_o\) and \(\beta\) are lower and upper solution of \((5)\) respectively. Hence, by Theorem 1, there exists a solution \(\mu_1\) of \((5)\) such that \(\mu_o \leq \mu_1 \leq \beta\) on \(J\). Next, we consider the problem
\[
-\mu''(t) = K(t, \mu(t), \mu_1(t)), \quad t \in J \\
\mu'(0) = 0, \quad \mu'(\pi) = 0.
\]
Employing the earlier arguments, it can be shown that there exists a solution \(\mu_2\) of \((6)\) such that \(\mu_1 \leq \mu_2 \leq \beta\) on \(J\), where \(\mu_1\) and \(\beta\) are lower and upper solution of \((6)\) respectively. Continuing this process successively, we obtain a monotone sequence \(\{\mu_n\}\) of solutions satisfying
\[
\mu_o \leq \mu_1 \leq \mu_2 \leq \mu_3 \leq \ldots \leq \mu_{n-1} \leq \mu_n \leq \beta,
\]
on \(J\), where the element \(\mu_n\) of the sequence is the solution of the problem
\[
-\mu''(t) = K(t, \mu(t), \mu_{n-1}(t)), \quad t \in J \\
\mu'(0) = 0, \quad \mu'(\pi) = 0.
\]
Since the sequence \(\{\mu_n\}\) is monotone, it follows that it has a pointwise limit \(\mu\). To show that \(\mu\) is in fact a solution of \((1)\), we observe that \(\mu_n\) is the solution of the following Neumann problem
\[
-\mu''(t) = f_n(t), \quad t \in J \\
\mu'(0) = 0, \quad \mu'(\pi) = 0,
\]
where \(f_n(t) = K(t, \mu_n(t), \mu_{n-1}(t))\). Since \(f_n(t)\) is continuous on \(\Omega\) and \(\alpha \leq \mu_n \leq \beta\) on \(\Omega\) for \(n = 1, 2, \ldots\), it follows that the sequence \(\{f_n(t)\}\) is bounded in \(C[J, R]\). This together with the the monotonicity of \(\{\mu_n\}\) implies that the sequence \(\{\mu_n\}\) uniformly converges to \(\mu\). Letting \(n \to \infty\), and using the uniform convergence of \(\{\mu_n\}\), we find that \(\mu\) satisfies the integral equation \((2)\) and \((3)\) and hence \(\mu\) is a solution of \((1)\).

To show that the convergence of the sequence is of order \(k\) \((k \geq 2)\), we set \(e_n = \mu - \mu_n, \quad a_n = \mu_{n+1} - \mu_n, \quad n = 1, 2, 3, \ldots\). Clearly, \(a_n \geq 0,\)
\(e_n \geq 0, \ e_n - a_n = e_{n+1}, \ a_n \leq e_n \) and \(a_n^k \leq e_n^k \). Using the mean value theorem repeatedly, we have
\[
-e''_n(t) = \mu''_n(t) - \mu''(t)
\]
\[
= \sum_{i=0}^{k-1} \frac{\partial^i f}{\partial u^i(t, \mu_{n-1})} \left(\frac{e_{n-1}^i - a_{n-1}^i}{i!} \right)
+ \frac{\partial^k f}{\partial u^k(t, \zeta(t))} \frac{e_{n-1}^k}{k!} + \frac{\partial^k \phi}{\partial u^k(t, \zeta(t))} \frac{a_{n-1}^k}{k!}
\]
\[
\leq \sum_{i=1}^{k-1} \frac{\partial^i f}{\partial u^i(t, \mu_{n-1})} \frac{1}{(i)!} \sum_{j=0}^{i-1} e_{n-1}^j a_{n-1}^j e_n
+ \left(\frac{\partial^k f}{\partial u^k(t, \zeta(t))} + \frac{\partial^k \phi}{\partial u^k(t, \zeta(t))} \right) \frac{e_{n-1}^k}{k!}
\]
\[
\leq q_n(t) e_n + N e_n^k,
\]
where
\[
q_n(t) = \sum_{i=1}^{k-1} \frac{\partial^i f}{\partial u^i(t, \mu_{n-1})} \frac{1}{(i)!} \sum_{j=0}^{i-1} e_{n-1}^j a_{n-1}^j,
\]
and \(N > 0 \) provides bound for \(\frac{\partial^k F}{\partial u^k(t, \zeta(t))} \) on \(\Omega \). As \(\lim_{n \to \infty} q_n(t) = f_u(t, \mu) < 0 \), we can choose \(\lambda < 0 \) and \(n_o \in N \) such that for \(n \geq n_o \), \(q_n(t) < \lambda \), we have
\[
-e''_n(t) - \lambda(t) e_n(t) \leq (q_n(t) - \lambda)e_n(t) + N e_n^k \leq N e_n^k,
\]
whose solution is
\[
e_n(t) = \int_0^\pi G_\lambda(t, s) N e_{n-1}^k ds, \quad t \in J.
\]
Taking maximum over \([0, \pi]\), we obtain
\[
||e_n|| \leq C ||e_{n-1}||^k,
\]
where \(C \) provides a bound on \(N \int_0^\pi G_\lambda(t, s) ds \).
This completes the proof. \(\square \)

References

Bashir Ahmad, Uzma Naz, and Rahmat A. Khan

Bashir Ahmad, Department of Mathematics, Faculty of science, King Abdul Aziz University, P. O. Box. 80203, Jeddah 21589, Saudi Arabia
E-mail: bashir_gau@yahoo.com

Uzma Naz and Rahmat A. Khan, Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
E-mail: u_naz@yahoo.com & rahmat_alipk@yahoo.com