COMPACT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRA

YOUNG SOO JO AND JOO HO KANG

ABSTRACT. Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that $Tx = y$. An interpolating operator for n vectors satisfies the equation $Tx_i = y_i$, for $i = 1, 2, \cdots, n$. In this article, we investigate compact interpolation problems in tridiagonal algebra: Given vectors x and y in a Hilbert space, when is there a compact operator A in a tridiagonal algebra such that $Ax = y$?

1. Introduction

Let \mathcal{C} be a collection of operators acting on a Hilbert space \mathcal{H} and let x and y be vectors on \mathcal{H}. An interpolation question for \mathcal{C} asks for which x and y is there a bounded operator $T \in \mathcal{C}$ such that $Tx = y$. A variation, the ‘n-vector interpolation problem’, asks for an operator T such that $Tx_i = y_i$ for fixed finite collections $\{x_1, x_2, \cdots, x_n\}$ and $\{y_1, y_2, \cdots, y_n\}$. The n-vector interpolation problem was considered for a C^*-algebra \mathcal{U} by Kadison [10]. In case \mathcal{U} is a nest algebra, the (one-vector) interpolation problem was solved by Lance [11]: his result was extended by Hopenwasser [5] to the case that \mathcal{U} is a CSL-algebra. Recently, Munch [12] obtained conditions for interpolation in case T is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser [6] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra.

First, we establish some notations and conventions. A subspace lattice \mathcal{L} is a strongly closed lattice of projections acting on a Hilbert space \mathcal{H}. We assume that the projections 0 and I lie in \mathcal{L}. We usually identify

Received November 28, 2001.
2000 Mathematics Subject Classification: 47L35.
Key words and phrases: compact interpolation, CSL-algebra, tridiagonal algebra, Alg\mathcal{L}.
projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If each pair of projections in \(L \) commutes, then \(L \) is called a commutative subspace lattice, or CSL. If \(L \) is CSL, \(\text{Alg} L \) is called a CSL-algebra. The symbol \(\text{Alg} L \) is the algebra of all bounded linear operators on \(H \) that leave invariant all the projections in \(L \). Let \(x \) and \(y \) be two vectors in a Hilbert space. Then \(\langle x, y \rangle \) means the inner product of the vectors \(x \) and \(y \). Let \(M \) be a subset of a Hilbert space. Then \(M^\perp \) is the orthogonal complement of \(M \). Let \(\mathbb{N} \) be the set of all natural numbers and let \(\mathbb{C} \) be the set of all complex numbers.

2. Results

Let \(H \) be a separable complex Hilbert space with a fixed orthonormal basis \(\{ e_1, e_2, \cdots \} \). Let \(x_1, x_2, \cdots, x_n \) be vectors in \(H \). Then \([x_1, x_2, \cdots, x_n] \) means the closed subspace generated by the vectors \(x_1, x_2, \cdots, x_n \). Let \(L \) be the subspace lattice generated by the subspaces \([e_{2k-1}], [e_{2k-1}, e_{2k}, e_{2k+1}] \) \((k = 1, 2, \cdots)\). Then the algebra \(\text{Alg} L \) is called a tridiagonal algebra which was introduced by F. Gilfeather and D. Larson [3].

Let \(A \) be the algebra consisting of all bounded operators acting on \(H \) of the form

\[
\begin{pmatrix}
* & * & & & \\
& * & & & \\
& & * & * & \\
& & & * & * \\
& & & & * & \\
& & & & & \ddots
\end{pmatrix}
\]

with respect to the orthonormal basis \(\{ e_1, e_2, \cdots \} \), where all non-starred entries are zero. It is easy to see that \(\text{Alg} L = A \). Let \(D = \{ A : A \text{ is a diagonal operator on } H \} \). Then \(D \) is a masa(maximal abelian subalgebra) of \(\text{Alg} L \) and \(D = (\text{Alg} L) \cap (\text{Alg} L)^* \), where \((\text{Alg} L)^* = \{ A^* : A \in \text{Alg} L \} \).

Let \(B(H) \) be the set of all bounded operators acting on \(H \).

In this paper, we use the convention \(0_0 = 0 \), when necessary.

The following theorem is well-known.

Theorem 1 [4]. Let \(A \) be a diagonal operator in \(B(H) \) with diagonal \(\{ a_n \} \). Then \(A \) is compact if and only if \(a_n \to 0 \) as \(n \to \infty \).

Theorem 2. Let \(x = (x_i) \) and \(y = (y_i) \) be two vectors in \(H \) such that \(x_i \neq 0 \) for all \(i = 1, 2, \cdots \). Then the following statements are equivalent.
(1) There exists an operator A in Alg\mathcal{L} such that $Ax = y$, A is compact and every E in \mathcal{L} reduces A.

$$\sup \left\{ \frac{\| \sum_{k=1}^{l} \alpha_k E_{k,y} \|}{\| \sum_{k=1}^{l} \alpha_k E_{k,x} \|} : l \in \mathbb{N}, \alpha_k \in \mathbb{C} \text{ and } E_k \in \mathcal{L} \right\} < \infty \text{ and } y_n x_n^{-1} \to 0 \text{ as } n \to \infty.$$

Proof. If $\sup \left\{ \frac{\| \sum_{k=1}^{l} \alpha_k E_{k,y} \|}{\| \sum_{k=1}^{l} \alpha_k E_{k,x} \|} : l \in \mathbb{N}, \alpha_k \in \mathbb{C} \text{ and } E_k \in \mathcal{L} \right\} < \infty$, then, there is an operator A in Alg\mathcal{L} such that $Ax = y$ and every E in \mathcal{L} reduces A by Theorem 1 ([9]). Since every E in \mathcal{L} reduces A, A is diagonal. Let $A = (a_{ii})$. Since $A = (a_{ii})$ is diagonal and $Ax = y$, $a_{ii} x_i = y_i$ for all $i = 1, 2, \ldots$. Since $y_n x_n^{-1} \to 0$ as $n \to \infty$, A is compact.

Conversely, since $Ax = y$ and every E in \mathcal{L} reduces A, $AE_{x} = E_{y}$ for every E in \mathcal{L}. So $A(\sum_{k=1}^{l} \alpha_k E_{k,x}) = \sum_{k=1}^{l} \alpha_k E_{k,y}$ for every $l \in \mathbb{N}$, every $\alpha_k \in \mathbb{C}$ and every $E_k \in \mathcal{L}$. Thus $\| \sum_{k=1}^{l} \alpha_k E_{k,y} \| \leq \| A \| \| \sum_{k=1}^{l} \alpha_k E_{k,x} \|$. If $\| \sum_{k=1}^{l} \alpha_k E_{k,x} \| \neq 0$, then $\| \sum_{k=1}^{l} \alpha_k E_{k,y} \| \leq \| A \| \| \sum_{k=1}^{l} \alpha_k E_{k,x} \|$. Since every E in \mathcal{L} reduces A, A is diagonal. Let $A = (a_{ii})$. Since $Ax = y$, $y_i = a_{ii} x_i$ and hence $a_{ii} = y_i x_i^{-1}$ for all $i = 1, 2, \ldots$. Since A is compact, $y_i x_i^{-1} \to 0$ as $i \to \infty$. \qed

Theorem 3. Let $x_p = (x_{pi})$ and $y_p = (y_{pi})$ be vectors in \mathcal{H} such that $x_{qi} \neq 0$ for some fixed q, all $i = 1, 2, \ldots$ and all $p = 1, 2, \ldots, n$. If there is an operator A in Alg\mathcal{L} such that $Ax_p = y_p$ for every E in \mathcal{L} reduces A and A is compact, then

$$\sup \left\{ \frac{\| \sum_{p=1}^{m_p} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p,x_p} \|}{\| \sum_{p=1}^{m_p} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p,y_p} \|} : m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \right\} < \infty$$

and $y_{qi} x_{qi}^{-1} \to 0$ as $i \to \infty$.

Proof. Since $Ax_p = y_p$ and every E in \mathcal{L} reduces A, $AE_{x_p} = E_{y_p}$ for every $p = 1, 2, \ldots, n$. So $A(\sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p,x_p}) = \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p,y_p}$, $m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L}$ and $\alpha_{k,p} \in \mathbb{C}$. Thus

$$\left\| \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p,y_p} \right\| \leq \| A \| \left\| \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p,x_p} \right\|.$$
If \(\| \sum_{i=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}x_p \| \neq 0 \), then
\[
\frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}y_p \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}x_p \|} \leq \| A \|.
\]
Hence
\[
\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}y_p \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}x_p \|} : m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \} < \infty.
\]
Since every \(E \) in \(\mathcal{L} \) reduces \(A \), \(A \) is diagonal. Let \(A = (a_{ii}) \). Since \(Ax_p = y_p \), \(y_{pi} = a_{ii}x_{pi} \) for all \(p = 1, 2, \ldots, n \) and all \(i = 1, 2, \ldots \). Since \(x_{qi} \neq 0 \), \(a_{ii} = y_{qi}x_{qi}^{-1} \) \((i = 1, 2, \ldots)\). Since \(A \) is compact, \(y_{qi}x_{qi}^{-1} \to 0 \) as \(i \to \infty \).

Theorem 4. Let \(x_p = (x_{pi}) \) and \(y_p = (y_{pi}) \) be vectors in \(\mathcal{H} \) such that \(x_{qi} \neq 0 \) for some fixed \(q \), all \(i = 1, 2, \ldots \) and all \(p = 1, 2, \ldots, n \).

If \(\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}y_p \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}x_p \|} : m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \} < \infty \)
and \(y_{qi}x_{qi}^{-1} \to 0 \) as \(i \to \infty \), then there is an operator \(A \) in \(\text{Alg}\mathcal{L} \) such that \(Ax_p = y_p \) for all \(p = 1, 2, \ldots, n \), every \(E \) in \(\mathcal{L} \) reduces \(A \) and \(A \) is compact.

Proof. Without loss of generality, we may assume that
\[
\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}y_p \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}x_p \|} : m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \} = 1.
\]
So
\[
\sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}y_p \leq \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}x_p, m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \text{. (\ast).}
\]
Let \(\mathcal{M} = \left\{ \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}x_p : m_p \in \mathbb{N}, l \leq n, \alpha_{k,p} \in \mathbb{C} \text{ and } E_{k,p} \in \mathcal{L} \right\} \).

Then \(\mathcal{M} \) is a linear manifold. Define \(A : \mathcal{M} \to \mathcal{H} \) by \(A(\sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}x_p) = \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p}E_{k,p}y_p \). Then \(A \) is well-defined by \((\ast) \).

Extend \(A \) to \(\mathcal{M} \) by continuity. Define \(A|_{\mathcal{M}^\perp} = 0 \). Clearly \(Ax_p = y_p \) \((p = 1, 2, \ldots, n)\) and \(\| A \| \leq 1 \). By an argument similar to that of the proof of Theorem 2, every \(E \) in \(\mathcal{L} \) reduces \(A \). So \(A \) is a diagonal operator. Let \(A = (a_{ii}) \). Since \(y_{pi} = Ax_{pi} \), \(a_{ii} = y_{pi}x_{pi}^{-1} \) \((i = 1, 2, \ldots)\). Since \(y_{qi}x_{qi}^{-1} \to 0 \) as \(i \to \infty \), \(A \) is compact.

If we summarize Theorems 3 and 4, then we can get the following theorem.
THEOREM 5. Let \(x_p = (x_{pi}) \) and \(y_p = (y_{pi}) \) be vectors in \(\mathcal{H} \) such that \(x_{qi} \neq 0 \) for some fixed \(q \) and all \(i = 1, 2, \ldots \). Then the following statements are equivalent.

1. There exists an operator \(A \in \text{AlgL} \) such that \(Ax_p = y_p \) \((p = 1, \cdots, n)\), every \(E \in \mathcal{L} \) reduces \(A \) and \(A \) is compact.

2. \[
\sup \left\{ \frac{\| \sum_{p=1}^l \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p \|}{\| \sum_{p=1}^l \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p \|} : m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \right\} < \infty
\]
and \(y_{qi} x_{qi}^{-1} \to 0 \) as \(i \to \infty \).

If we modify the proof of Theorems 3 and 4, then we can get the following theorem.

THEOREM 6. Let \(x_p = (x_{pi}) \) and \(y_p = (y_{pi}) \) be vectors in \(\mathcal{H}(p = 1, 2, \cdots) \) such that \(x_{qi} \neq 0 \) for all \(i \) and for some fixed \(q \). Then the following statements are equivalent.

1. There exists an operator \(A \in \text{AlgL} \) such that \(Ax_p = y_p \) \((p = 1, \cdots)\) every \(E \in \mathcal{L} \) reduces \(A \) and \(A \) is compact.

2. \[
\sup \left\{ \frac{\| \sum_{p=1}^l \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p \|}{\| \sum_{p=1}^l \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p \|} : m_p, l \in \mathbb{N}, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \right\} < \infty
\]
and \(y_{qi} x_{qi}^{-1} \to 0 \) as \(i \to \infty \).

References

Young Soo Jo and Joo Ho Kang

Young Soo Jo
Department of Mathematics
Keimyung University
Taegu, Korea

E-mail: ysjo@kmu.ac.kr

Joo Ho Kang
Department of Mathematics
Taegu University
Taegu, Korea

E-mail: jhkang@daegu.ac.kr