AFFINENESS OF DEFINABLE C^r MANIFOLDS AND ITS APPLICATIONS

TOMOHIRO KAWAKAMI

Abstract. Let \mathcal{M} be an exponentially bounded o-minimal expansion of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field of real numbers. We prove that if r is a non-negative integer, then every definable C^r manifold is affine. Let $f: X \to Y$ be a definable C^1 map between definable C^1 manifolds. We show that the set S of critical points of f and $f(S)$ are definable and $\dim f(S) < \dim Y$. Moreover we prove that if $1 < s < r < \infty$, then every definable C^s manifold admits a unique definable C^r manifold structure up to definable C^r diffeomorphism.

1. Introduction

Let \mathcal{M} denote an o-minimal expansion of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field of real numbers. The term “definable” means “definable with parameters in \mathcal{M}”, and any manifold in this paper does not have boundary, unless otherwise stated. Several properties of definable C^r manifolds and definable C^r maps are studied in [9], [10], [8]. The Nash category coincides with the definable C^∞ category based on \mathcal{R} [15], and definable C^r categories based on \mathcal{M} are generalizations of the C^r Nash category. General references on o-minimal structures are [3], [5], see also [14]. Further properties and constructions of them are studied in [4], [6], [12].

We say that \mathcal{M} is polynomially bounded if for every function $f: \mathbb{R} \to \mathbb{R}$ definable in \mathcal{M}, there exist a natural number k and a real number x_0 such that $|f(x)| \leq x^k$ for any $x > x_0$. Otherwise, \mathcal{M} is called exponential. One of typical examples of polynomially bounded structures is \mathcal{R}. By a result of C. Miller [11], if \mathcal{M} is exponential,
then the exponential function $\mathbb{R} \to \mathbb{R}, x \mapsto e^x$ is definable. We call \mathcal{M} \textit{exponentially bounded} if for every function $h : \mathbb{R} \rightarrow \mathbb{R}$ definable in \mathcal{M}, there exist a natural number l and a real number x_1 such that $|h(x)| \leq \exp_l(x)$ for any $x > x_1$, where $\exp_l(x)$ denotes the lth iterate of the exponential function, e.g. $\exp_2(x) = e^{e^x}$. Note that the problem that every o-minimal expansion \mathcal{M} of \mathbb{R} is exponentially bounded is still open (e.g. [2]).

Theorem 1.1. If \mathcal{M} is exponentially bounded and $0 \leq r < \infty$, then every definable C^r manifold is affine.

Theorem 1.1 is a generalization of 1.1 [10] and an equivariant C^∞ version of Theorem 1.1 is true if \mathcal{M} is exponential and the manifold is compact (see 1.2 [10]). If $\mathcal{M} = \mathbb{R}$ and $r = \infty$, then Theorem 1.1 is not true [13].

As applications of Theorem 1.1, we have the following two results.

Let A be a subset of an n-dimensional definable C^r manifold X with a definable C^r atlas $\{(U_i, \phi_i : U_i \to \mathbb{R}^n)\}$, and $r > 0$. We say that A has \textit{measure} 0 in X if each $\phi_i(U_i \cap A) \subset \mathbb{R}^n$ has measure 0 (e.g. see P.68 [7]).

Theorem 1.2. Let X and Y be definable C^1 manifolds and $f : X \to Y$ a definable C^1 map. If \mathcal{M} is exponentially bounded, then the set S of critical points of f and $f(S)$ are definable and $\text{dim } f(S) < \text{dim } Y$. In particular, the measure of $f(S)$ in Y is 0.

Without assuming that f is definable, there exists a C^1 map from \mathbb{R}^2 to \mathbb{R}^1 whose critical point set has positive measure [17]. Note that if $\text{dim } X < \text{dim } Y$ and f is a definable C^1 imbedding, then $S = X$, in particular, $\text{dim } f(S) = \text{dim } X$. Thus in Theorem 1.2, one cannot replace $\text{dim } f(S) < \text{dim } Y$ by $\text{dim } f(S) < \text{min}(\text{dim } X, \text{dim } Y)$.

Theorem 1.3. If \mathcal{M} is exponentially bounded and $1 < s < r < \infty$, then every definable C^s manifold admits a unique definable C^r manifold structure up to definable C^r diffeomorphism.

By [13], there exists an uncountable family $\{X\}_{\lambda \in \Lambda}$ of Nash manifolds such that they are C^2 Nash diffeomorphic and that X_λ is not Nash diffeomorphic to X_μ for $\lambda \neq \mu$. Thus if $\mathcal{M} = \mathbb{R}$ and $r = \infty$, then Theorem 1.3 does not hold.

2. Proof of results

To prove Theorem 1.1, we need the following three results.
Proposition 2.1 (3.2 [10]). Let X be an affine definable C^r manifold and $0 \leq r < \infty$. Then X can be definably C^r imbeddable into some \mathbb{R}^n such that X is closed in \mathbb{R}^n. Moreover it is possible to definably C^r imbeddable into some \mathbb{R}^k such that X is bounded and $\overline{X} - X$ consists of at most one point, where \overline{X} denotes the closure of X in \mathbb{R}^k.

Let $e_n : \mathbb{R} \to \mathbb{R}, n \in \mathbb{N}$ be the function defined by

$$e_n(x) = \begin{cases} e^{-\exp_{n-1}(1/x^2)}, & x \neq 0 \\ 0, & x = 0 \end{cases},$$

where $\exp_0(x) = x$. Then elementary computations show the following proposition.

Proposition 2.2.

(1) For any polynomial function $P(x_1, \cdots, x_n)$ in n variables,

$$\lim_{x \to 0} P \left(\frac{1}{x}, \exp_1 \left(\frac{1}{x^2} \right), \cdots, \exp_{n-1} \left(\frac{1}{x^2} \right) \right) e_n(x) = 0.$$

(2) Every e_n is a C^∞ function.

Since M is exponentially bounded, in the proof of C.5 [5], we can take $\phi(t) = te_n(t)$ for some $n \in \mathbb{N}$. Hence a similar proof of C.14 [5] proves the following proposition.

Proposition 2.3 ([5]). Let A be a non-empty compact definable subset of \mathbb{R}^n and f, g two continuous definable functions on A such that $f^{-1}(0) \subset g^{-1}(0)$. If M is exponentially bounded, then there exist a natural number k and a positive constant c such that

$$e_k(g) \leq c|f|$$
on A.

Proof of Theorem 1.1. Let X be a definable C^r manifold. If $\dim X = 0$, then X consists of finitely many points. Thus the result holds.

Assume that $m := \dim X \geq 1$. Let $\{\phi_i : U_i \to \mathbb{R}^m \}_{i=1}^l$ be a definable C^r atlas of X. Then each $\phi_i(U_i)$ is a noncompact definable C^r submanifold of \mathbb{R}^m. Hence by Proposition 2.1, we have a definable C^r imbedding $\phi'_i : \phi_i(U_i) \to \mathbb{R}^{m'}$ such that the image is bounded in $\mathbb{R}^{m'}$ and $\overline{\phi'_i \circ \phi_i(U_i)} = \phi'_i \circ \phi_i(U_i)$ consists of one point, say 0. For a sufficiently large positive integer n, set

$$\eta : \mathbb{R}^{m'} \to \mathbb{R}^{m'}, \eta(x_1, \cdots, x_{m'}) = \left(\sum_{j=1}^{m'} e_n(x_j)x_1, \cdots, \sum_{j=1}^{m'} e_n(x_j)x_{m'} \right),$$
Then g_i is a definable C^r imbedding of U_i into $\mathbb{R}^{m'}$.

We now prove that the extension $\tilde{g}_i : X \rightarrow \mathbb{R}$ of g_i is defined by $\tilde{g}_i = 0$ on $X - U_i$ is of class definable C^r. It is sufficient to see this on each definable C^r coordinate neighborhood of X. Hence we may assume that X is open and bounded in \mathbb{R}^m. We only have to prove that for any sequence $\{a_i\}_{i=1}^\infty$ in U_i convergent to a point of $X - U_i$ and for any $\alpha \in (\mathbb{N} \cup \{0\})^m$ with $|\alpha| \leq r$, $\{D^\alpha g_i(a_i)\}_{i=1}^\infty$ converges to 0. On the other hand, $g_i = (\sum_{j=1}^{m'} e_n(\phi_{ij})\psi_{ij}, \cdots \sum_{j=1}^{m'} e_n(\phi_{ij})\psi_{im'})$, where $\psi_{ij}(\phi_{ij}) = (\phi_{ij}, \cdots, \phi_{im'})$. By the construction of ψ_{ij}, $\{\psi_{ij}(a_i)\}_{i=1}^\infty$ converges to 0. Hence for any natural number k, $\{e_k(\phi_{ij}(a_i))\psi_{is}(a_i)\}_{i=1}^\infty$ converges to 0. Assume that if $|\alpha| \leq r - 1$, then there exists some $K \in \mathbb{N}$ such that if $k \geq K$, then $D^\alpha(e_k(\phi_{ij}(a_i))\psi_{is}(a_i)) \rightarrow 0$ as $t \rightarrow \infty$. Let $D^\alpha(e_k(\phi_{ij}(x)))\psi_{is}(x) = F(x)e_k(\phi_{ij}(x))$. Then F is a definable $C^{r-|\alpha|}$ map on U.

Let $\psi = \max\{1, |\partial F/\partial x_1|, |\partial \phi_{ij}/\partial x_1|\}$.

Define

$$\theta_{ij} = \begin{cases} \min\{|\phi_{ij}|, 1/\psi\} & \text{on } U_i \\ 0 & \text{on } X - U_i \end{cases}, \quad \tilde{\phi}_{ij} = \begin{cases} \phi_{ij} & \text{on } U_i \\ 0 & \text{on } X - U_i \end{cases}.$$

Then θ_{ij} and $\tilde{\phi}_{ij}$ are continuous definable maps on X such that

$$X - U_i \subset (\theta_{ij})^{-1}(0) = (\tilde{\phi}_{ij})^{-1}(0).$$

Moreover by the construction of ϕ_{ij}, θ_{ij} and $\tilde{\phi}_{ij}$, θ_{ij} and $\tilde{\phi}_{ij}$ are extendable to continuous definable maps on \mathbb{R}^m. Hence by Proposition 2.3, there exist a positive integer a, a positive number b and a definable open neighborhood V of $X - U_i$ in X such that $e_a(\phi_{ij}) \leq b|\theta_{ij}|$ on V.

On the other hand, by the definition of θ_{ij}, $|\psi \theta_{ij}| \leq 1$ on U_i. Thus $|\psi|e_a(\tilde{\phi}_{ij}) \leq b$. Hence if $n \geq N : = K + a + 1$, then

$$\frac{\partial}{\partial x_1} (D^\alpha(e_n(\phi_{ij})\psi_{is})) = \frac{\partial}{\partial x_1} (F e_n(\phi_{ij})) = \frac{\partial F}{\partial x_1} e_n(\phi_{ij}) + F R_1 e_n(\phi_{ij}) = \frac{\partial F}{\partial x_1} e_n(\phi_{ij}) + (F e_K(\phi_{ij}))(R_1 e_n(\phi_{ij})).$$
where $R_1 = 2(\frac{\partial \phi_{ij}}{\partial x_1}) \frac{\partial}{\partial x_1} \left(\frac{1}{\phi_{ij}} \right) \cdots \frac{\partial}{\partial x_1} \left(\frac{1}{\phi_{ij}} \right)$. Thus using the inductive hypothesis and Proposition 2.2,

$$|\frac{\partial}{\partial x_1} (D^n(\alpha(\phi_{ij})))|$$

$$\leq |\frac{\partial}{\partial x_1} e_n(\phi_{ij}) + |F\alpha_K(\phi_{ij})||R_1| e_n(\phi_{ij})$$

$$\leq b \frac{e_n(\phi_{ij})}{e_a(\phi_{ij})} + |F\alpha_K(\phi_{ij})| \frac{2b e_n(\phi_{ij})}{e_a(\phi_{ij}) e_K(\phi_{ij})} \frac{\exp(\frac{1}{\phi_{ij}}) \cdots \exp_{n-1}(\frac{1}{\phi_{ij}})}{|\phi_{ij}|} \rightarrow 0.$$

By the above argument, replacing some larger N, if $|\alpha| \leq r$ and $n \geq N$, then $|D^n(\alpha(\phi_{ij})))| \rightarrow 0$. Therefore if $n \geq N$, then each \tilde{g}_i is a definable C^r map and the function $h_i : X \rightarrow \mathbb{R}$ defined by $h_i = \sqrt{(\tilde{g}_i1)^2 + \cdots + (\tilde{g}_im')^2 + 1}$ is a definable C^r function with $h_i(X - U_i) = 1$, $(1 \leq i \leq l)$, where $\tilde{g}_i = (\tilde{g}_i1, \cdots, \tilde{g}_im')$, $(1 \leq i \leq l)$. It is easy to see that

$$(\tilde{g}_i1, \cdots, \tilde{g}_i, h_1, \cdots, h_l) : X \rightarrow \mathbb{R}^{m'} \times \mathbb{R}^l$$

is a definable C^r imbedding. \hfill \Box

Proof of Theorem 1.2. Since \mathcal{M} is exponentially bounded and by Theorem 1.1, we may assume that X and Y are affine.

The first half of the theorem is obvious. We have only to prove the latter half. If $\dim X < \dim Y$, then $\dim f(S) \leq \dim f(X) \leq \dim X < \dim Y$. Thus we assume that $\dim Y \leq \dim X$.

By Sard’s theorem (e.g. 3.1.3 [7]), if $r > \max(0, \dim X - \dim Y)$, then the set of critical values of every C^r map from X to Y has measure 0 in Y. Fix such an r.

By the definable C^r cell decomposition theorem (e.g. 7.3.3 [3]), there exists a finite partition $\{C_i\}_i$ of X into definable C^r cells such that each $f|C_i : C_i \rightarrow Y$ is a definable C^r map. Note that every C_i is a definable C^r submanifold of X and that C_i is open in X if $\dim C_i = \dim X$.

Let K_i denote the set of critical values of $f|C_i : C_i \rightarrow Y$ and let $K = f(S)$. Then by Sard’s theorem, each K_i has measure 0 in Y. Thus $\dim K_i < \dim Y$. Hence $\dim \cup_i K_i < \dim Y$.

We now prove $K \subset \bigcup_i K_i \cup \dim C_i < \dim Y f(C_i)$. Let $y \in K$. Then there exists an $x \in X = \bigcup_i C_i$ such that $y = f(x)$ and the rank of the Jacobian of f at x is smaller than $\dim Y$. Assume that $x \in C_i$. If $\dim C_i < \dim Y$, then $y = f(x) \in \cup \dim C_i < \dim Y f(C_i)$. If $\dim C_i = \dim X$, then $y = f(x) \in K_i$ because C_i is open in X. Assume that $\dim Y \leq \dim C_i < \dim X$. Since C_i is a definable C^r submanifold of X,
there exists a definable C^r chart $\phi : U \to V \subset \mathbb{R}^k$ of X around x such that $\phi(x) = 0$ and $\phi(C_i \cap U) = V \cap \mathbb{R}^l$, where $k = \dim X, l = \dim C_i$ and $\mathbb{R}^l = \mathbb{R}^l \times 0 \subset \mathbb{R}^k$. The Jacobian A of $((f|_{C_i}) \circ \phi^{-1})$ at $\phi(x)$ is a submatrix of the Jacobian B of $f \circ \phi^{-1}$ at $\phi(x)$. Then the determinant of every minor of B of degree $\dim Y$ at x is 0 because $\dim Y \leq \dim C_i < \dim X$. Hence the rank of A at $\phi(x)$ is smaller than $\dim Y$. Thus $y \in K_i$.

Since $\dim \cup_i K_i < \dim Y$ and $\dim f(C_i) \leq \dim C_i$, $\dim K = \dim f(S) < \dim Y$.

To prove Theorem 1.3, we need the following several results.

Proposition 2.4 (1.3 [8]). Let $1 \leq r < \infty$. Then every definable C^r submanifold X of \mathbb{R}^n has a definable C^r tubular neighborhood (U, p) of X in \mathbb{R}^n, namely U is a definable open neighborhood of X in \mathbb{R}^n and $p : U \to X$ is a definable C^r map with $p|X = \text{id}_X$.

Theorem 2.5 (1.2 [9]). If $0 < r < \infty$, then every noncompact affine definable C^r manifold is definably C^r diffeomorphic to the interior of some compact affine definable C^r manifold with boundary.

Theorem 2.6 (5.8 [8]). If $2 \leq r < \infty$, then every compact affine definable C^r manifold with boundary admits a definable C^r collar, namely there exists a definable C^r imbedding $\phi : \partial X \times [0, 1] \to X$ such that $\phi((\partial X \times \{0\})$ is the inclusion $\partial X \to X$, where the action on $[0, 1]$ is trivial.

Note that Proposition 2.4, Theorem 2.5 and 2.6 are true in more general settings (see 1.3 [8], 1.2 [9] and 5.8 [8]).

The following two results are algebraic realizations of compact C^∞ manifolds.

Theorem 2.7 ([16]). Every compact C^∞ manifold is C^∞ diffeomorphic to a nonsingular algebraic set.

Theorem 2.8 ([1]). Let X' be a compact C^∞ submanifold of a compact C^∞ manifold X. Then there exist a nonsingular algebraic set Y and its nonsingular algebraic subset Y' such that $(X; X')$ is C^∞ diffeomorphic to $(Y; Y')$.

The following is a result for raising differentiability of manifolds.

Theorem 2.9 (2.2.9 [7]). If $1 \leq s < \infty$, then every C^s manifold admits a compatible C^∞ manifold structure. In other words, for any C^s manifold (X, θ), there exists a C^∞ structure θ' on X such that $\text{id}_X : (X, \theta) \to (X, \theta')$ is a C^s diffeomorphism.
Some refinement of the proof of 2.2.9 [7] proves the following relative version of it.

Theorem 2.10. Let \(X' \) be a compact \(C^s \) submanifold of a compact \(C^s \) manifold \(X \) and \(1 \leq s < \infty \). Then there exist a compact \(C^\infty \) manifold \(Y \) and its compact \(C^\infty \) submanifold \(Y' \) such that \((X;X')\) is \(C^s \) diffeomorphic to \((Y;Y')\).

The following is useful to approximate a relative \(C^1 \) diffeomorphism by relative definable \(C^r \) diffeomorphisms.

Theorem 2.11. Let \(X \) and \(Y \) compact definable \(C^r \) manifolds and \(1 \leq r < \infty \). Suppose that \(X' \) and \(Y' \) are compact definable \(C^r \) submanifolds of \(X \) and \(Y \), respectively, and that \(f : (X;X') \to (Y;Y') \) is a \(C^1 \) diffeomorphism. Then there exists a definable \(C^r \) diffeomorphism \(h : (X;X') \to (Y;Y') \) as an approximation of \(f \) in the \(C^1 \) Whitney topology.

Proof. Since \(X, Y \) are compact and by 1.1 [10] and 1.2 [10], we may assume that \(X \) and \(Y \) are definable \(C^r \) submanifolds of \(\mathbb{R}^n \) and \(\mathbb{R}^m \), respectively.

Since \(f|X' : X' \to Y' \) is a \(C^1 \) diffeomorphism and by the polynomial approximation theorem and Proposition 2.4, there exists a definable \(C^r \) diffeomorphism \(f_1 : X' \to Y' \) as an approximation of \(f|X' : X' \to Y' \) in the \(C^1 \) Whitney topology. Similarly, one can find a definable \(C^r \) diffeomorphism \(f_2 : X \to Y \) as an approximation of \(f : X \to Y \) in the \(C^1 \) Whitney topology.

By Proposition 2.4, there exists a definable \(C^r \) tubular neighborhood \((U,p)\) of \(X' \) in \(\mathbb{R}^n \) (resp. \((V,q)\) of \(Y \) in \(\mathbb{R}^m \)). Then \(U' := U \cap X \) is a definable open neighborhood of \(X' \) in \(X \). Thus we have a definable \(C^r \) map \(f_3 : U' \to Y' \) with \(f_3|X' = f_1 \). Take a definable open neighborhood \(U_1 \) of \(X' \) in \(U' \) such that the closure of \(U_1 \) in \(X \) is properly contained in \(U' \) and take a definable \(C^r \) function \(\lambda : X \to \mathbb{R} \) such that \(\lambda = 1 \) on \(U_1 \) and its support lies in \(U' \). Then we have a definable \(C^r \) map \(h : (X;X') \to (Y;Y'), h(x) = \lambda(x)f_3(x) + (1 - \lambda(x))f_2(x) \) as an approximation of \(f : (X;X') \to (Y;Y') \) in the \(C^1 \) Whitney topology. If our approximation is sufficiently close, then \(h \) is the required definable \(C^r \) diffeomorphism.

One can define the definable \(C^s \) topology on the set of definable \(C^s \) maps between affine definable \(C^s \) manifolds (see [9]). This definable \(C^s \) topology is different from the \(C^s \) Whitney topology in general, but they coincide if the domain manifold is compact.
Theorem 2.12 ([14], 4.11 [9]). Let $0 \leq s < r < \infty$. Then every definable C^r map between affine definable C^s manifolds is approximated in the definable C^s topology by definable C^r maps.

Note that Theorem 2.12 are true in a more general setting (see 1.1 [8]).

Proposition 2.13 ([14], 4.10 [9]). Let X and Y be definable C^s submanifolds of \mathbb{R}^n and $0 < s < \infty$. If $f : X \to Y$ is a definable C^s diffeomorphism, then an approximation of f in the definable C^s topology is a definable C^s diffeomorphism.

Proof of Theorem 1.3. Let X be a definable C^s manifold. Then by Theorem 1.1 and since \mathcal{M} is exponentially bounded, X is affine.

Assume that X is compact. By Theorem 2.9, X is C^s diffeomorphic to a compact C^∞ manifold X'. Thus by Theorem 2.7, X' is C^∞ diffeomorphic to a nonsingular algebraic set X''. In particular, X is C^s diffeomorphic to an affine definable C^∞ manifold X''. By Theorem 2.11, X is definably C^s diffeomorphic to X''. Thus in this case, X admits a definable C^r manifold structure.

Assume that X is not compact. By Theorem 2.5, X is definably C^s diffeomorphic to the interior of some compact affine definable C^s manifold Y with boundary ∂Y. Thus by Theorem 2.6, Y admits a definable C^s collar. Hence we have the double D of Y. By Theorem 1.1, D is affine and compact. Using Theorem 2.10, there exist a compact C^∞ manifold D' and a compact C^∞ submanifold Z of D' such that $(D, \partial Y)$ is C^s diffeomorphic to (D', Z). By Theorem 2.8, one can find a nonsingular algebraic set D'' and a nonsingular algebraic subset Z' of D'' such that (D', Z) is C^∞ diffeomorphic to (D'', Z'). In particular, D'' is an affine definable C^∞ manifold, Z' is a definable C^∞ submanifold of D'' and $(D, \partial Y)$ is C^s diffeomorphic to (D'', Z'). Using Theorem 2.11, $(D, \partial Y)$ is definably C^s diffeomorphic to (D'', Z'). Thus X is definably C^s diffeomorphic to some union of connected components of $D'' - Z'$. Therefore X admits a definable C^r manifold structure.

Uniqueness follows from Theorem 1.1, Theorem 2.12 and Proposition 2.13.

Remark that the above proof shows that every definable C^s manifold is definably C^s diffeomorphic to an affine definable C^∞ manifold.
Affineness of definable C^r manifolds and its applications

References

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, WAKAYAMA UNIVERSITY, SAKAEDANI WAKAYAMA 640-8510, JAPAN
E-mail: kawa@center.wakayama-u.ac.jp