ON THE WEAK LAW FOR WEIGHTED SUMS INDEXED BY RANDOM VARIABLES UNDER NEGATIVELY ASSOCIATED ARRAYS

JONG-IL BAEK AND DONG-MYONG LEE

Abstract. Let \(\{X_{nk} | 1 \leq k \leq n, n \geq 1\} \) be an array of row negatively associated (NA) random variables which satisfy \(P(|X_{nk}| > x) \leq P(|X| > x) \). For weighed sums \(\sum_{k=1}^{T_n} a_k X_{nk} \) indexed by random variables \(\{T_n|n \geq 1\} \), we establish a general weak law of large numbers (WLLN) of the form
\[
\sum_{k=1}^{T_n} a_k X_{nk} - \nu_{[\alpha_n]} / b_{[\alpha_n]}
\]
under some suitable conditions, where \(\{a_n|n \geq 1\}, \{b_n|n \geq 1\} \) are sequences of constants with \(a_n > 0, \) \(0 < b_n \to \infty, n \geq 1, \) and \(\{\nu_{\alpha_n}|n \geq 1\} \) is an array of random variables, and the symbol \([x] \) denotes the greatest integer in \(x \).

1. Introduction

A finite family \(\{X_1, \cdots, X_n\} \) is said to be negatively associated (abbreviated to (NA)) if for any disjoint subsets of and any two coordinate-wise nondecreasing or nonincreasing functions \(f_1 \) and \(f_2 \)
\[
Cov(f_1(X_i, i \in A), f_2(X_j, j \in B)) \leq 0.
\]
An infinite family of random variables is NA if every finite subfamily is NA. Alam and Lal Saxena ([4]) and Joag-Dev and Proschan ([8]) introduced the notion of negatively associated random variables. Concepts of NA random variables are of considerable uses in multivariate statistical analysis and system reliability, the notion of NA has received more and more attention recently. There have been several new results on limiting properties for NA sequences. It was discovered that limiting properties

Received April 29, 2002.

2000 Mathematics Subject Classification: 60F05.

Key words and phrases: negatively associated random variables, weighted sums indexed by random variables, weak law of large numbers, martingale difference sequence.

This paper was supported by Korea Research Foundation Grant (KRF-2001-042-D00008) and Wonkwang University Research Grant in 2002.
of NA sequences are quite similar to those of independent sequences. One can refer to Newman ([14]) for the central limit theorem, Matula ([13]) for the three series theorem, Shao ([16]) for moment inequalities, Su, etc ([17]) for the negative associate arrays. However, the little work has been done for arrays of row NA random variables.

Let \(\{X_{nk}|1 \leq k \leq n, n \geq 1\} \) be an array of row NA random variables \(X \) which satisfy \(P(|X_{nk}| > x) \leq P(|X| > x) \) on the underlying probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and set \(\mathcal{F}_{n,j} = \sigma(X_{nk}, 1 \leq k \leq j), n \geq 1, j \geq 1, \) and \(\mathcal{F}_{n,0} = \{\Phi, \Omega\}, n \geq 1. \) Let \(\{T_n|n \geq 1\} \) be a sequence of positive integer valued random variables and \(1 \leq \alpha_n \rightarrow \infty \) is a sequence of constants such that \(P(T_n > \lambda \alpha_n) = o(1) \) for some positive integer \(\lambda \) and let \(\{a_n|n \geq 1\} \) and \(\{b_n|n \geq 1\} \) be sequence of constants with \(a_n > 0, 0 < b_n \rightarrow \infty, n \geq 1, \) and \(\{\nu_{\alpha_n}|n \geq 1\} \) is a suitable constants. In this paper, we establish a general weak law of large numbers (WLLN) of the form

\[
\frac{\sum_{k=1}^{T_n} a_k X_{nk} - \nu_{[\alpha_n]}}{b_{[\alpha_n]}} \text{ converges in probability to zero as } n \rightarrow \infty,
\]

as \(n \rightarrow \infty, \) where the symbol \([x]\) denotes the greatest integer in \(x. \) The WLLNs of the form (1.2) for an array of random variables have been established by Gut ([7]), Kowalski and Rychlik ([10]), and Rosalsky and Teicher ([15]), etc. Our result is to extend and have a general weak law of large numbers (WLLN) for weighted sums indexed by random variables \(\{T_n|n \geq 1\} \) under an array of row NA random variables which satisfy \(P(|X_{nk}| > x) \leq P(|X| > x) \) in practice. Throught this paper, a sequence \(\{c_n|n \geq 1\} \) is defined by \(c_n = b_n/a_n, n \geq 1 \) and the symbol \(C \) denotes a generic constant \((0 < C < \infty)\) which is not necessary the same one in each appearance.

2. Preliminaries

Lemma 2.1. (a) Let \(\{X_{nk}|1 \leq k \leq n, n \geq 1\} \) be an array of row NA random variables satisfying \(P(|X_{nk}| > x) \leq P(|X| > x). \) (b) Let \(\{T_n|n \geq 1\} \) be a sequence of positive integer valued random variables and \(1 \leq \alpha_n \rightarrow \infty \) is a sequence of constants such that \(P(T_n > \lambda \alpha_n) = o(1) \) and \(b_{[\lambda \alpha_n]} = O(b_{[\alpha_n]}) \) for some positive integer \(\lambda, \) (c) let \(\{a_n|n \geq 1\} \) and \(\{b_n|n \geq 1\} \) be a sequence of constants with \(a_n > 0, 0 < b_n \rightarrow \infty, n \geq 1, \)
and suppose that one of the following conditions holds.

(2.1) \[c_n = \frac{b_n}{a_n} \uparrow, \quad \frac{b_n}{na_n} \downarrow, \quad \sum_{k=1}^{n} a_k^2 = o(b_n^2), \quad \text{and} \quad \sum_{k=1}^{n} \frac{b_k^2}{k^2a_k^2} = O \left(\frac{b_n^2}{\sum_{k=1}^{n} a_k^2} \right) \]

or

\[\frac{b_n}{a_n} \uparrow, \quad \frac{b_n}{na_n} \rightarrow \infty, \]

(2.2) \[\sum_{k=1}^{n} a_k^2 = O(na_n^2), \quad \text{and} \quad \sum_{k=1}^{n} \frac{b_k^2}{k^2a_k^2} = O \left(\frac{b_n^2}{\sum_{k=1}^{n} a_k^2} \right) \]

or

(2.3) \[\frac{b_n}{na_n} \uparrow, \quad \sum_{k=1}^{n} a_k^2 = O(na_n^2). \]

If

(2.4) \[nP\{|X| > c_n\} = o(1) \]

then,

(2.5) \[\sum_{k=1}^{n} a_k^2 P\{|X_{nk}| > c_n\} = o(a_n^2) \]

and

(2.6) \[\sum_{k=1}^{n} a_k^2 E|X_{nk}|^2 I(|X_{nk}| \leq c_n) = o(b_n^2). \]

Also, if (2.4) holds then,

(2.7) \[\frac{\sum_{k=1}^{T_n} a_k (X_{nk} - X'_{nk})}{b_{[\alpha_n]}} \rightarrow 0 \text{ in probability as } n \rightarrow \infty, \]

where \(X'_{nk} = -c_{[\alpha_n]} I(X_{nk} < c_{[\alpha_n]}) + X_{nk} I(|X_{nk}| \leq c_{[\alpha_n]}) + c_{[\alpha_n]} I(X_{nk} > c_{[\alpha_n]}) \).
Proof. First, we will use the idea of the proof of Theorem in Adler et al. ([3]). To prove (2.5), observe that under (2.1)

\[
\frac{1}{a_n^2} \sum_{k=1}^{n} a_k^2 P\{|X_{nk}| > c_n\} \leq \frac{C_b^2 P\{|X| > c_n\}}{a_n^2 \sum_{k=1}^{n} n(c_k^2/k^2)} \leq \frac{C_b^2 P\{|X| > c_n\}}{n(c_n^2/n^2)} = CnP\{|X| > c_n\} = o(1)
\]

by (2.4). On the other hand, under (2.2) or (2.3)

\[
\frac{1}{a_n^2} \sum_{k=1}^{n} a_k^2 P\{|X_{nk}| > c_n\} \leq CnP\{|X| > c_n\} = o(1)
\]

again by (2.4) and so (2.5) obtains. To prove (2.6), note that \(c_n \uparrow\) under (2.1), (2.2) or (2.3) and that (2.2) and (2.3) individually ensure

\[
\sum_{k=1}^{n} a_k^2 = o(b_n^2).
\]

Thus (2.8) holds under (2.1), (2.2) or (2.3). Let \(c_0 = 0\) and \(d_n = c_n/n, n \geq 1\). Define an array \(\{B_{nk}, 0 \leq k \leq n, n \geq 1\}\) by

\[
B_{nk} = \begin{cases} \frac{1}{b_n} \sum_{i=1}^{n} a_i^2 \left(\frac{c_{k+1}^2 - c_k^2}{k} \right), & \text{for } 1 \leq k \leq n - 1, n \geq 2 \\ 0, & \text{for } k = 0, n, n \geq 1. \end{cases}
\]

It will now be shown that \(\{B_{nk}, 0 \leq k \leq n, n \geq 1\}\) is a Toeplitz array, that is,

\[
\sum_{k=0}^{n} |B_{nk}| = O(1)
\]

and

\[
B_{nk} \to 0 \text{ as } n \to \infty \text{ for all fixed } k \geq 0.
\]

Clearly (2.8) implies (2.10). To verify (2.9), note that \(B_{nk} \geq 0, 0 \leq k \leq n, n \geq 1\), since \(c_n \uparrow\) and that \(k \geq 1\),

\[
\frac{c_{k+1}^2 - c_k^2}{k} = (k + 1)^2d_{k+1}^2 - j^2d_k^2 \leq (k + 3)d_{k+1}^2 - kd_k^2
\]
Then under (2.1), since $d_n \downarrow$, it follows from (2.11) that

$$\frac{c_{k+1}^2 - c_k^2}{k^2} \leq 3d_k^2 = \frac{3c_k^2}{k^2}, \quad k \geq 1. $$

Hence, for $n \geq 2$,

$$\sum_{k=0}^{n} B_{nk} \leq \left(\frac{3}{b_n^2} \sum_{i=1}^{n} a_i^2\right) \left(\sum_{k=1}^{n-1} \frac{c_k^2}{k^2}\right) = O(1)$$

and so (2.10) holds. Now under (2.5) or (2.6), for $n \geq 2$,

$$\sum_{k=0}^{n} B_{nk} \leq \left(\frac{1}{b_n^2} \sum_{i=1}^{n} a_i^2\right) \left(\sum_{k=1}^{n-1} (k+3)d_{k+1}^2 - kd_k^2\right)$$

by (2.11)

$$\leq \left(\frac{1}{b_n^2} \sum_{i=1}^{n} a_i^2\right) \left(\sum_{k=1}^{n-1} (k+3)d_{k+1}^2 - kd_k^2\right)$$

+ \left(\frac{3}{b_n^2} \sum_{i=1}^{n} a_i^2\right) \left(\sum_{k=1}^{n-1} d_{k+1}^2\right)

$$\leq \frac{Cn}{c_n^2} nd_n^2 + \left(\frac{3}{b_n^2} \sum_{i=1}^{n} a_i^2\right) \left(\sum_{k=1}^{n-1} d_{k+1}^2\right)$$

Thus, under (2.2) or (2.3), recalling (2.12)

$$\sum_{k=0}^{n} B_{nk} = O(1)$$
and again (2.9) holds, there by proving that \(\{B_{nk}, 0 \leq k \leq n, n \geq 1\} \) is a Toeplitz array. By (2.1) and the Toeplitz lemma (see, e.g., [9] or [12])

\[
\sum_{k=0}^{n} B_{nk} k P\{|X| > c_k\} = o(1).
\]

Next, note that

\[
\frac{1}{b_n^2} \sum_{i=1}^{n} a_i^2 E|X|^2 I(|X| \leq c_n)
\]

\[
= \frac{1}{b_n^2} \sum_{i=1}^{n} a_i^2 \sum_{k=1}^{n} E|X|^2 I(c_{k-1} < |X| \leq c_k)
\]

\[
\leq \frac{1}{b_n^2} \sum_{i=1}^{n} a_i^2 \sum_{k=1}^{n} c_k^2 P\{c_{k-1} \leq |X| \leq c_k\}
\]

\[
= \frac{1}{b_n^2} \sum_{i=1}^{n} a_i^2 \sum_{k=1}^{n} c_k^2 (P\{|X| > c_{k-1}\} - P\{|X| > c_k\})
\]

\[
= \frac{1}{b_n^2} \sum_{i=1}^{n} a_i^2 (c_{n+1}^2 P\{|X| > 0\} - c_n^2 P\{|X| > c_n\})
\]

\[
+ \sum_{k=1}^{n} (c_{k+1}^2 - c_k^2) P\{|X| > c_k\})
\]

\[
\leq \frac{1}{b_n^2} \sum_{i=1}^{n} a_i^2 \sum_{k=1}^{n} \frac{c_{k+1}^2 - c_k^2}{k} P\{|X| > c_k\} + o(1)
\]

\[
= \sum_{k=0}^{n} B_{nk} k P\{|X| > c_k\} + o(1)
\]

\[
= o(1) \text{ by (2.13)}.
\]

Therefore (2.6) holds. Finally, since \(X'_{nk} = -c_{[\alpha_n]} I(X_{nk} < c_{[\alpha_n]}) + X_{nk} I(|X_{nk}| \leq c_{[\alpha_n]}) + c_{[\alpha_n]} I(X_{nk} > c_{[\alpha_n]}) \), \(\{X'_{nk} | 1 \leq k \leq n, n \geq 1\} \) is still an array of row \(NA \) random variables.
To prove (2.7), for an arbitrary $\epsilon > 0$,

$$ P \left\{ \left| \sum_{k=1}^{T_n} a_k (X_{nk} - X'_{nk}) \right| > \epsilon \right\} $$

$$ \leq P \left\{ \left| \sum_{k=1}^{T_n} a_k (X_{nk} - X'_{nk}) \right| > \epsilon, T_n \leq \lambda \alpha_n \right\} + P(T_n > \lambda \alpha_n) $$

$$ \leq P \left(\bigcup_{l=1}^{[\lambda \alpha_n]} \left\{ \left| \sum_{k=1}^{l} a_k (X_{nk} - X'_{nk}) \right| > \epsilon b_{[\alpha_n]} \right\} \right) + o(1) \text{ by } P(T_n > \lambda \alpha_n) $$

$$ = o(1) $$

$$ = P(\max_{1 \leq l \leq [\lambda \alpha_n]} \sum_{k=1}^{l} a_k (X_{nk} - X'_{nk}) > \epsilon b_{[\alpha_n]}) + o(1) $$

$$ \leq \frac{1}{\epsilon^2 b_{[\alpha_n]}^2} \sum_{k=1}^{[\lambda \alpha_n]} a_k^2 \mathbb{E} \left(\sum_{k=1}^{[\lambda \alpha_n]} a_k (X_{nk} - X'_{nk}) \right)^2 + o(1) $$

$$ \leq \frac{1}{\epsilon^2 b_{[\alpha_n]}^2} \sum_{k=1}^{[\lambda \alpha_n]} a_k^2 c_{[\alpha_n]}^2 P(|X_{nk}| \geq c_{[\alpha_n]}) $$

$$ + \frac{1}{\epsilon^2 b_{[\alpha_n]}^2} \sum_{k=1}^{[\lambda \alpha_n]} a_k^2 \mathbb{E} X_{nk}^2 I(|X_{nk}| \leq c_{[\alpha_n]}) + o(1) $$

$$ \leq \frac{1}{\epsilon^2 a_{[\alpha_n]}^2} \sum_{k=1}^{[\lambda \alpha_n]} a_k^2 P(|X| \geq c_{[\alpha_n]}) $$

$$ + \frac{1}{\epsilon^2 b_{[\alpha_n]}^2} \sum_{k=1}^{[\lambda \alpha_n]} a_k^2 \mathbb{E} X_{nk}^2 I(|X| \leq c_{[\alpha_n]}) + o(1) $$

$$ = o(1), \text{ by } (2.6) \text{ and } (2.5). $$

This completes the proof. \qed

3. Main results

Applying Lemma 2.1 and Lemma 2.2, we establish some limit theorems as follows.

Theorem 3.1. Let $\{X_{nk} \mid 1 \leq k \leq n, n \geq 1\}$ be an array of row NA random variables satisfying $P(|X_{nk}| > x) \leq P(|X| > x)$. Let
\{a_n| n \geq 1\}, \{b_n| n \geq 1\} \text{ and } \{T_n| n \geq 1\} \text{ satisfy the hypothesis of Lemma 2.1. If (2.4) hold then the WLLN}

$$\sum_{k=1}^{T_n} a_k(X_{nk} - E(X'_{nk}|F_{nk,k-1})) \bigg/ b_{\alpha_n} \rightarrow 0 \text{ in probability as } n \rightarrow \infty,$$

where $X'_{nk} = -c_{\alpha_n}I(X_{nk} < c_{\alpha_n}) + X_{nk}I(|X_{nk}| \leq c_{\alpha_n}) + c_{\alpha_n}I(X_{nk} > c_{\alpha_n})$.

\textbf{Proof.} Let $X'_{nk} = -c_{\alpha_n}I(X_{nk} < c_{\alpha_n}) + X_{nk}I(|X_{nk}| \leq c_{\alpha_n}) + c_{\alpha_n}I(X_{nk} > c_{\alpha_n})$. Then $\{X'_{nk}|1 \leq k \leq n, n \geq 1\}$ is still array of row NA random variables and also $(X'_{nk} - E(X'_{nk}|F_{nk,k-1}), 1 \leq k \leq T_n)$ is a martingale difference sequence. From the result of Lemma (2.1), it suffices to show that $\sum_{k=1}^{T_n} a_k(X'_{nk} - E(X'_{nk}|F_{nk,k-1}))/b_{\alpha_n} \rightarrow 0$ in probability as $n \rightarrow \infty$. For an arbitrary $\epsilon > 0$,

\[
P\left\{ \left| \sum_{k=1}^{T_n} a_k(X'_{nk} - E(X'_{nk}|F_{nk,k-1})) \right|/b_{\alpha_n} > \epsilon \right\} \leq P\left\{ \left| \sum_{k=1}^{T_n} a_k(X'_{nk} - E(X'_{nk}|F_{nk,k-1}))/b_{\alpha_n} \right| > \epsilon, T_n \leq \lambda \alpha_n \right\} + P(T_n > \lambda \alpha_n)
\]

\[
\leq P(\bigcup_{k=1}^{\lambda \alpha_n} \{ \sum_{k=1}^{l} a_k(X'_{nk} - E(X'_{nk}|F_{nk,k-1})) > \epsilon b_{\alpha_n} \}) + o(1)
\]

\[
= P(\max_{1 \leq l \leq \lambda \alpha_n} \left| \sum_{k=1}^{l} a_k(X'_{nk} - E(X'_{nk}|F_{nk,k-1})) > \epsilon b_{\alpha_n} \right|) + o(1)
\]

\[
\leq \frac{1}{\epsilon^2 b_{\alpha_n}} E \left(\sum_{k=1}^{\lambda \alpha_n} a_k(X_{nk}' - E(X_{nk}'))^2 \right) + o(1)
\]

by hájek – Rénji inequality

\[
\leq \frac{1}{\epsilon^2 b_{\alpha_n}} \sum_{k=1}^{\lambda \alpha_n} a_k^2 E X_{nk}^2 I(|X_{nk}| \leq c_{\alpha_n})
\]

\[
+ \frac{1}{\epsilon^2 b_{\alpha_n}} \sum_{k=1}^{\lambda \alpha_n} a_k^2 c_{\alpha_n}^2 P(|X_{nk}| \geq c_{\alpha_n}) + o(1)
\]
\[
\leq \frac{1}{e^2a^2(\lambda_n)} \sum_{k=1}^{[\lambda_n]} a_k^2 E X^2 I(|X| \leq c(\lambda_n)) \\
+ \frac{1}{e^2b^2(\lambda_n)} \sum_{k=1}^{[\lambda_n]} a_k^2 P(|X| \geq c(\lambda_n)) + o(1)
\]

\[= o(1), \quad \text{by (2.6) and (2.5).}\]

This completes the proof. \(\square\)

The next corollary is an immediate consequence of Theorem 3.1 by taking \(a_n = 1\), \(b_n = n^{1/p}\), \(\alpha_n = n\), \(n \geq 1\) and it is a similar result to Theorem 5.2.6 of Chow and Teicher ([5]) when \(p = 1\).

Corollary 3.2. Let \(\{X_{nk}| 1 \leq k \leq n, n \geq 1\}\) be an array of row \(\text{NA}\) random variables satisfying \(P(|X_{nk}| > x) \leq P(|X| > x)\). If

\[
(3.1) \quad n P\{|X| > n^{1/p}\} = o(1)
\]

for some \(1 \leq p \leq 2\) and \(\{T_n| n \geq 1\}\) is a sequence of positive integer valued random variables satisfying \(\frac{T_n}{n^{1/p}} \to c\) in probability where \(0 < c < \infty\). Then

\[
\sum_{k=1}^{T_n} \frac{X_{nk}}{T_n} - EX_{nk} \to 0 \quad \text{in probability } n \to 0,
\]

where \(X'_{nk} = -n^{\frac{1}{p}} I(X_{nk} < n^{\frac{1}{p}}) + X_{nk} I(|X_{nk}| \leq n^{\frac{1}{p}}) + n^{\frac{1}{p}} I(X_{nk} > n^{\frac{1}{p}})\).

Finally, we obtain the following corollary from Corollary 3.2 by taking \(T_n = n\) and \(p = 1\).

Corollary 3.3. Let \(\{X_{nk}| 1 \leq k \leq n, n \geq 1\}\) be an array of row \(\text{NA}\) random variables satisfying \(P(|X_{nk}| > x) \leq P(|X| > x)\). If (3.1) holds for \(p = 1\), then

\[
\sum_{k=1}^{T_n} \frac{X_{nk}}{n} - EX_{nk} \to 0 \quad \text{in probability } n \to 0.
\]

References

School of Mathematics & Informational Statistics
and Institute of Basic Natural Science
Wonkwang University
IkSan 570-749, Korea
E-mail: jiback@wonkwang.ac.kr