SPACE-LIKE SUBMANIFOLDS WITH CONSTANT SCALAR CURVATURE IN THE DE SITTER SPACES

Liu Ximin

Abstract. Let M^n be a space-like submanifold in a de Sitter space $M_p^{n+p}(c)$ with constant scalar curvature. We firstly extend Cheng-Yau’s technique to higher codimensional cases. Then we study the rigidity problem for M^n with parallel normalized mean curvature vector field.

1. Introduction

Let $M_p^{n+p}(c)$ be an $(n+p)$-dimensional connected semi-Riemannian manifold of constant curvature c whose index is p. It is called an indefinite space form of index p and simply a space form when $p = 0$. If $c > 0$, we call it as a de Sitter space of index p. Akutagawa [3] and Ramanathan [11] investigated space-like hypersurfaces in a de Sitter space and proved independently that a complete space-like hypersurface in a de Sitter space with constant mean curvature is totally umbilical if the mean curvature H satisfies $H^2 \leq c$ when $n = 2$ and $n^2 H^2 < 4(n-1)c$ when $n \geq 3$. Later, Cheng [4] generalized this result to general submanifolds in a de Sitter space.

To our best knowledge, there are almost no intrinsic rigidity results for the space-like submanifolds with constant scalar curvature in a de Sitter space until Zheng [15] obtained the following result.

Theorem. Let M^n be an n-dimensional compact space-like hypersurface in $M_1^{n+1}(c)$ with constant scalar curvature. If M^n satisfies

1. $K(M) > 0$,
2. $\text{Ric}(M) \leq (n-1)c$,
3. $R < c$,

where R is the normalized scalar curvature of M^n, then M^n is totally umbilical.

Received February 23, 2000.
2000 Mathematics Subject Classification: 53C40, 53C42, 53C50.
Key words and phrases: space-like submanifold, scalar curvature, normalized mean curvature vector field.

This project is supported in part by the National Science Foundation of China.
In [5], Cheng-Yau firstly studied the rigidity problem for a hypersurface with constant scalar curvature in a space form by introducing a self-adjoint second order differential operator (See Theorems 1 and 2 in [5]). They proved that, for an M^n in $M^{n+1}(c)$, if R is constant and $R \geq c$, then $|\nabla \sigma|^2 \geq n^2|\nabla H|^2$ where σ and H denote the second fundamental form and the length of the mean curvature vector field of M^n respectively. By using Cheng-Yau’s technique, Li [7] [8] studied the pinching problem and also proved some global rigidity theorems for hypersurfaces with constant scalar curvature.

In the present paper, we would like extend Cheng-Yau’s technique to higher codimensional cases and use this result to study the rigidity problem for space-like submanifolds in a de Sitter space with constant scalar curvature.

2. Preliminaries

Let $M_p^{n+p}(c)$ be an $(n + p)$-dimensional semi-Riemannian manifold of constant curvature c whose index is p. Let M^n be an n-dimensional Riemannian manifold immersed in $M_p^{n+p}(c)$. As the semi-Riemannian metric of $M_p^{n+p}(c)$ induces the Riemannian metric of M^n, M^n is called a space-like submanifold. We choose a local field of semi-Riemannian orthonormal frames e_1, \ldots, e_{n+p} in $M_p^{n+p}(c)$ such that at each point of M^n, e_1, \ldots, e_n span the tangent space of M^n and form an orthonormal frame there. We use the following convention on the range of indices:

$$1 \leq A, B, C, \ldots \leq n + p; \quad 1 \leq i, j, k, \ldots \leq n; \quad n + 1 \leq \alpha, \beta, \gamma \leq n + p.$$

Let $\omega_1, \ldots, \omega_{n+p}$ be its dual frame field so that the semi-Riemannian metric of $M_p^{n+p}(c)$ is given by $ds^2 = \sum_i \omega_i^2 - \sum_\alpha \omega_\alpha^2 = \sum_A \epsilon_A \omega_A^2$, where $\epsilon_i = 1$ and $\epsilon_\alpha = -1$. Then the structure equations of $M_p^{n+p}(c)$ are given by

(1) $d\omega_A = \sum_B \epsilon_B \omega_{AB} \land \omega_B, \quad \omega_{AB} + \omega_{BA} = 0,$

(2) $d\omega_{AB} = \sum_C \epsilon_C \omega_{AC} \land \omega_{CB} - \frac{1}{2} \sum_{C,D} K_{ABCD} \omega_C \land \omega_D,$

(3) $K_{ABCD} = c \epsilon_A \epsilon_B (\delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC}).$

Restrict these form to M^n, we have

(4) $\omega_\alpha = 0, \quad n + 1 \leq \alpha \leq n + p,$
the Riemannian metric of \(M^n \) is written as \(ds^2 = \sum_i \omega_i^2 \). From Cartan’s lemma we can write

\[
\omega_{\alpha i} = \sum_j h_{ij}^\alpha \omega_j, \quad h_{ij}^\alpha = h_{ji}^\alpha.
\]

From these formulas, we obtain the structure equations of \(M^n \):

\[
d\omega_i = \sum_j \omega_{ij} \wedge \omega_j, \quad \omega_{ij} + \omega_{ji} = 0,
\]

\[
d\omega_{ij} = \sum_k \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} \sum_{k,l} K_{ijkl} \omega_k \wedge \omega_l,
\]

\[
R_{ijkl} = c(\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}) - \sum_\alpha (h_{ik}^\alpha h_{jl}^\alpha - h_{il}^\alpha h_{jk}^\alpha),
\]

where \(R_{ijkl} \) are the components of the curvature tensor of \(M^n \). For indefinite Riemannian manifolds in detail, refer to O’Neill [9].

Denote \(L_\alpha = (h_{ij}^\alpha)_{n \times n} \) and \(H_\alpha = (1/n) \sum_i h_{ii}^\alpha \) for \(\alpha = n + 1, \ldots, n + p \). Then the mean curvature vector field \(\xi \), the mean curvature \(H \) and the square of the length of the second fundamental form \(S \) are expressed as

\[
\xi = \sum_\alpha H_\alpha e_\alpha, \quad H = |\xi|, \quad S = \sum_{\alpha, i, j} (h_{ij}^\alpha)^2,
\]

respectively. Moreover, the normal curvature tensor \(\{ R_{\alpha \beta kl} \} \), the Ricci curvature tensor \(\{ R_{ik} \} \) and the normalized scalar curvature \(R \) are expressed as

\[
R_{\alpha \beta kl} = \sum_m (h_{km}^\alpha h_{ml}^\beta - h_{lm}^\alpha h_{mk}^\beta),
\]

\[
R_{ik} = (n - 1) c \delta_{ik} - n \sum_\alpha (H_\alpha) h_{ik}^\alpha + \sum_{\alpha, j} h_{ij}^\alpha h_{jk}^\alpha,
\]

\[
R = c + \frac{1}{n(n - 1)} (S - n^2 H^2).
\]

Define the first and the second covariant derivatives of \(\{ h_{ij}^\alpha \} \), say \(\{ h_{ijk}^\alpha \} \) and \(\{ h_{ijkl}^\alpha \} \) by

\[
\sum_k h_{ijk}^\alpha \omega_k = dh_{ij}^\alpha + \sum_k h_{kji}^\alpha \omega_{ki} + \sum_k h_{ikj}^\alpha \omega_k + \sum_\beta h_{ijk}^{\beta \alpha},
\]
(11) \[\sum_i h_{ijkl}^\alpha \omega_l = \sum_i d h_{ijk}^\alpha + \sum_m h_{mjk}^\alpha \omega_m + \sum_m h_{imk}^\alpha \omega_m + \sum_m h_{ijm}^\alpha \omega_m + \sum_\beta h_{ij}^\beta \omega^\beta. \]

Then, by exterior differentiation of (5), we obtain the Codazzi equation

(12) \[h_{ijk}^\alpha = h_{ikj}^\alpha. \]

It follows from Ricci’s identity that

(13) \[h_{ijkl}^\alpha - h_{ijlk}^\alpha = \sum_m h_{imk}^\alpha R_{mijkl} + \sum_m h_{im}^\alpha R_{mkjl} + \sum_\beta h_{ik}^\beta h_{mj}^\beta. \]

The Laplacian of \(h_{ij}^\alpha \) is defined by \(\Delta h_{ij}^\alpha = \sum_k h_{ikj}^\alpha \). From (13), we have

\[\Delta h_{ij}^\alpha = n H_{a,ij} + \sum_{k,m} h_{km}^\alpha R_{mij} + \sum_{k,m} h_{im}^\alpha R_{mkj} + \sum_{k,\beta} h_{ik}^\beta R_{\beta ajk} - 2 \sum_{\beta,k,m} h_{ik}^\beta h_{km}^\beta h_{mj}^\beta + \sum_{m,\beta} S_{\beta} h_{ij}^\beta \]

where \(S_{\alpha\beta} = \sum_{i,j} h_{ij}^\alpha h_{ij}^\beta \) for all \(\alpha \) and \(\beta \). Define \(N(A) = \sum_{i,j} a_{ij}^2 \) for any real matrix \(A = (a_{ij})_{n\times n} \). Then we have

(14) \[\sum_{i,j} h_{ij}^\alpha \Delta h_{ij}^\alpha = n \sum_{i,j} H_{a,ij} h_{ij}^\alpha + n c h_{ij}^\alpha - n \sum_{\beta} H_{\beta} h_{im}^\alpha h_{mj}^\beta + \sum_{\beta} S_{\alpha\beta} h_{ij}^\beta \]

where \(S_{\alpha} = \sum_{i,j} (h_{ij}^\alpha)^2 \), for every \(\alpha \).

Suppose \(H > 0 \) on \(M^n \) and choose \(e_{n+1} = \xi / H \). Then it follows that

(15) \[H_{n+1} = H; \quad H_{a} = 0, \quad \alpha > n + 1. \]

From (10) and (15) we can see

(16) \[H_{n+1,kl} \omega_k = dH, \quad H_{a,k} \omega_k = H \omega_{n+1} \quad \alpha > n + 1. \]

From (11), (15) and (16) we have

(17) \[H_{n+1,kl} = H_{kl} - \frac{1}{H} \sum_{\beta > n+1} H_{\beta,k} H_{\beta,l}, \]

where \(dH = \sum_i H_i \omega_i \) and \(\nabla H_k = \sum_i H_{ki} \omega_i \equiv dH_k + H_{i} \omega_{ik} \) for all \(k \).
Using (14) and (17), we have
\[
\sum_{i,j} h_{ij}^{n+1} \Delta h_{ij}^{n+1} = n \sum_{i,j} H_{ij} h_{ij}^{n+1} - \frac{n}{H} \sum_{i,j} \sum_{\beta>n+1} H_{\beta,ij} h_{ij}^{n+1}
+ n c S_{n+1} - c n^2 H^2 - n H f_{n+1} + S_{n+1}^2 + \sum_{\beta>n+1} S_{\beta,n+1}^2
\]
\[
+ \sum_{\beta>n+1} \tilde{N}(L_{n+1} L_{\beta} - L_{\beta} L_{n+1}),
\]
where \(f_{n+1} = Tr(L_{n+1})^3 \).

M. Okumura [10] established the following lemma (see also [2]).

Lemma 2.1. Let \(\{a_i\}_{i=1}^n \) be a set of real numbers satisfying \(\sum_i a_i = 0 \), \(\sum_i a_i^2 = t^2 \), where \(t \geq 0 \). Then we have
\[
-\frac{n-2}{\sqrt{n(n-1)}} t^3 \leq \sum_i a_i^3 \leq \frac{n-2}{\sqrt{n(n-1)}} t^3,
\]
and the equalities hold if and only if at least \((n-1)\) of the \(a_i \) are equal.

Denote the eigenvalues of \(L_{n+1} \) by \(\{\lambda_i\}_{i=1}^n \). Then we have
\[
n H = \sum_i \lambda_i, \quad S_{n+1} = \sum_i \lambda_i^2, \quad f_{n+1} = \sum_i \lambda_i^3.
\]
Set \(\tilde{L}_{n+1} = L_{n+1} - H I_n \), \(\tilde{f}_{n+1} = f_{n+1} - 3 H S_{n+1} + 2 n H^3 \), \(\tilde{S}_{n+1} = S_{n+1} - n H^2 \), and \(\tilde{\lambda}_i = \lambda_i - H \), where \(I_n \) denotes the identity matrix of degree \(n \). Then (19) changes into
\[
0 = \sum_i \tilde{\lambda}_i, \quad \tilde{S}_{n+1} = \sum_i \tilde{\lambda}_i^2, \quad \tilde{f}_{n+1} = \sum_i \tilde{\lambda}_i^3.
\]

By applying Okumura’s Lemma to \(\tilde{f}_{n+1} \), we have
\[
\tilde{f}_{n+1} \leq \frac{n-2}{\sqrt{n(n-1)}} \tilde{S}_{n+1} \sqrt{\tilde{S}_{n+1}} \iff
\]
\[
f_{n+1} \leq 3 H S_{n+1} - 2 n H^3 + \frac{n-2}{\sqrt{n(n-1)}} \tilde{S}_{n+1} \sqrt{\tilde{S}_{n+1}}.
\]
So we have
\[
n c S_{n+1} - c n^2 H^2 - n H f_{n+1} + S_{n+1}^2
\geq \tilde{S}_{n+1} \{ n c + \tilde{S}_{n+1} - n H^2 - n(n-2) H \sqrt{\frac{\tilde{S}_{n+1}}{n(n-1)}} \}.\]
It follows from (15) that

\[
\sum_{\beta>n+1} S^2_{n+1\beta} = \sum_{\beta>n+1} \left\{ \sum_{i,j} (h_{ij}^{n+1} - H\delta_{ij})h_{ij}^{\beta} \right\}^2.
\]

Denote \(S_I = \sum_{\beta>n+1} S_{\beta} \). From (22), we have

\[
\sum_{\beta>n+1} S^2_{n+1\beta} \leq S_{n+1} S_I.
\]

Let \(T = \sum_{i,j} T_{ij}\omega_i\omega_j \) be a symmetric tensor on \(M^n \) defined by

\[
T_{ij} = h_{ij}^{n+1} - nH\delta_{ij}.
\]

We introduce an operator \(\Box \) associated to \(T \) acting on \(f \in C^2(M^n) \) by

\[
\Box f = \sum_{i,j} T_{ij}f_{ij} = \sum_{i,j} h_{ij}^{n+1}f_{ij} - nH\Delta f,
\]

where \(\Delta \) is the Laplacian. Since \((T_{ij}) \) is divergence-free, it follows from [5] that the operator \(\Box \) is self-adjoint relative to the \(L^2 \)-inner product of \(M^n \).

Choosing \(f = H \) in above expression, we have

\[
\sum_{i,j} h_{ij}^{n+1}H_{ij} = \Box H + nH\Delta H.
\]

Denote \(\bar{S} = \bar{S}_{n+1} + S_I \). Substituting (21), (23) and (25) into (18), we get

\[
\sum_{i,j} h_{ij}^{n+1}\Delta h_{ij}^{n+1} \geq n\Box H + \frac{1}{2}n^2\Delta(H^2) - n^2|\nabla H|^2 \]

\[
- \frac{n}{H} \sum_{\beta>n+1} \sum_{i,j} H_{\beta,i}H_{\beta,j}h_{ij}^{n+1}
\]

\[
+ \sum_{\beta>n+1} N(L_{n+1}L_{\beta} - L_{\beta}L_{n+1})
\]

\[
+ \bar{S}_{n+1} \left\{ nc - nH^2 + \bar{S}_{n+1} - n(n-2)H \sqrt{\bar{S}_{n+1}} \right\}.
\]

3. An extension of Cheng-Yau’s technique

Cheng-Yau [5] gave a lower estimation for \(|\nabla \sigma|^2 \), the square of the length of the covariant derivative of \(\sigma \), which plays an important role in their discussion. They proved that, for a hypersurface in a space form of constant scalar curvature \(c \), if the normalized scalar curvature \(R \) is constant and \(R \geq c \), then \(|\nabla \sigma|^2 \geq n^2|\nabla H|^2 \).
For the space-like submanifolds in a de Sitter space, we can prove the following

Theorem 3.1. Let M^n be a connected submanifold in $M^{n+p}_p(c)$ with nowhere zero mean curvature H. If R is constant and $R < c$, then

$$|\nabla \sigma|^2 = \sum_{i,j,k,\alpha} (h^\alpha_{ijk})^2 \geq n^2 |\nabla H|^2$$

and the symmetric tensor T defined by (24) is negative semi-definite. Moreover, if the equality in (27) holds on M^n, then H is constant and T is negative definite.

Proof. From (9), we have

$$n^2 H^2 - S = n(n-1)(c-R) > 0.$$ Taking the covariant derivative on both sides of this equality, we get

$$n^2 H H_k = \sum_{i,j,\alpha} h^\alpha_{ij} h^\alpha_{ijk}, \quad k = 1, \ldots, n.$$ For every k, it follows from Cauchy-Schwarz's inequality that

$$n^4 H^2 H_k^2 = (\sum_{i,j,\alpha} h^\alpha_{ij} h^\alpha_{ijk})^2 \leq S \sum_{i,j,\alpha} (h^\alpha_{ijk})^2,$$

where the equality holds if and only if there exists a real function c_k such that

$$h^\alpha_{ijk} = c_k h^\alpha_{ij}$$

for all i, j and α. Taking sum on both sides of (28) with respect to k, we have

$$n^4 H^2 |\nabla H|^2 = n^4 H^2 \sum_k H_k^2 \leq S \sum_{i,j,k,\alpha} (h^\alpha_{ijk})^2 \leq n^2 H^2 \sum_{i,j,k,\alpha} (h^\alpha_{ijk})^2.$$

Therefore (27) holds on M^n.

Denote the eigenvalues of L_{n+1} by $\{\lambda_i\}_{i=1}^n$. Then $\lambda_i^2 \leq S_{n+1} \leq S \leq n^2 H^2$ for all i. Hence $|\lambda_i| \leq nH$ for all i. Therefore $T = (T_{ij}) = L_{n+1} - nH I_n$ is negative semi-definite.

Suppose that $\sum_{i,j,k,\alpha} (h^\alpha_{ijk})^2 = n^2 |\nabla H|^2$ holds on M^n. It follows from (30) that

$$0 \leq n^3 (n-1)(c-R)|\nabla H|^2 \leq S \left(\sum_{i,j,k,\alpha} (h^\alpha_{ijk})^2 - n^2 |\nabla H|^2 \right).$$

Hence $(c-R)|\nabla H|^2 = 0$ on M^n. Because $R < c$, $|\nabla H|^2 = 0$ on M^n. In this case, $|\lambda_i| \leq (S_{n+1})^{1/2} \leq S^{1/2} < nH$ for all i. Thus T is negative definite. This completes the proof of Theorem 3.1. \qed
4. Submanifolds with flat normal bundle

In this section, we propose to use the extension of Cheng-Yau’s technique given in section 3 to study the rigidity problem for compact submanifolds in the de Sitter space \(M_{n+p}^p(c) \). We continue to use the same notations as in section 2. Let \(M^n \) be a compact submanifold in \(M_{n+p}^p(c) \) with nowhere zero mean curvature \(H \). Suppose that \(\xi/H \) is parallel and choose \(e_{n+1} = \xi/H \). Then \(\omega_{n+1} = 0 \) for all \(\alpha \). It follows from (11) and (16) that

\[
H_{\alpha,k} = 0, \quad H_{\alpha,kl} = 0,
\]

for all \(\alpha > n + 1 \) and \(k, l = 1, \ldots, n \).

Suppose in addition that the normal bundle of \(M^n \) is flat. Then

\[
\Omega_{\alpha\beta} = -\frac{1}{2} R_{\alpha\beta kl} \omega_k \wedge \omega_l = 0,
\]

for all \(\alpha \) and \(\beta \) on \(M^n \). For all \(\alpha \) and \(\beta \) we have \(L_{\alpha}L_{\beta} = L_{\beta}L_{\alpha} \), which is equivalent to that \(\{L_{\alpha}\}_{\alpha=n+1}^{n+p} \) can be diagonalized simultaneously.

We denote the eigenvalues of \(L_{\alpha} \) by \(\{\lambda_{\alpha}^1, \ldots, \lambda_{\alpha}^n\} \) for every \(\alpha \). It follows from [13] that

\[
\frac{1}{2} \Delta S = \sum_{i,j,k,\alpha} (h_{ijk}^\alpha)^2 + n \sum_{i,j,\alpha} H_{\alpha,ij} h_{ij}^\alpha + \sum_{\alpha} \sum_{i<j} K_{ij}(\lambda_{\alpha}^i - \lambda_{\alpha}^j)^2,
\]

where \(K_{ij} = c + \sum_\beta \lambda_{\beta}^i \lambda_{\beta}^j \) denotes the sectional curvature of \(M^n \) corresponding to the plane section spanned by \(\{e_i, e_j\} \) for every pair of \(i < j \).

Assume that \(R \) is constant and \(R < c \). From (25) and (32), we have

\[
\sum_{i,j,k,\alpha} (h_{ijk}^\alpha)^2 + n \sum_{i,j,\alpha} H_{\alpha,ij} h_{ij}^\alpha = n \square H + \frac{1}{2} \Delta (n^2 H^2) + \sum_{i,j,k,\alpha} (h_{ijk}^\alpha)^2 - n^2 |\nabla H|^2.
\]

Note that \(\Delta S = \Delta (n^2 H^2) \). Therefore (34) turns into

\[
0 = n \square H + \sum_{i,j,k,\alpha} (h_{ijk}^\alpha)^2 - n^2 |\nabla H|^2 + \sum_{\alpha} \sum_{i<j} K_{ij}(\lambda_{\alpha}^i - \lambda_{\alpha}^j)^2.
\]

Integrating the both sides of above equality on \(M^n \), we have

\[
0 = \int_M \left(\sum_{i,j,k,\alpha} (h_{ijk}^\alpha)^2 - n^2 |\nabla H|^2 \right) + \sum_{i<j} \sum_{\alpha} \int_M K_{ij}(\lambda_{\alpha}^i - \lambda_{\alpha}^j)^2 * 1.
\]

If \(K_{ij} \geq 0 \) on \(M^n \), it follows from (27) and the above equality that

\[
\sum_{i,j,k,\alpha} (h_{ijk}^\alpha)^2 \equiv n^2 |\nabla H|^2; \quad K_{ij}(\lambda_{\alpha}^i - \lambda_{\alpha}^j)^2 \equiv 0,
\]

for every \(\alpha \) and \(i < j \). Hence we can prove the following theorem.
Theorem 4.1. Let M^n be a compact submanifold with non-negative sectional curvature in $M^{n+p}_c(c)$. Suppose that the normal bundle $N(M)$ is flat and the normalized mean curvature vector is parallel. If R is constant and $R < c$, then M^n is totally umbilical.

Proof. From the first equality of (35) and Theorem 3.1, we have that H is constant on M^n, then ξ is parallel. From Theorem 3 of [1] we know that M^n is totally umbilical. \qed

Remark 4.1. In Theorem 4.1, we have used the assumptions that are different from that in Theorem 3 [1] to obtain the same result. Also, we need the following

Lemma 4.1 [12]. Let A and B be $n \times n$-symmetric matrices satisfying $\text{Tr} A = 0, \text{Tr} B = 0$ and $AB - BA = 0$. Then

$$-(n-2) \frac{(\text{Tr} A^2)(\text{Tr} B^2)^{1/2}}{\sqrt{n(n-1)}} \leq \text{Tr} A^2 B \leq \frac{(\text{Tr} A^2)(\text{Tr} B^2)^{1/2}}{\sqrt{n(n-1)}},$$

and the equality holds on the right (resp. left) hand side if and only if $n-1$ of the eigenvalues x_i of A and the corresponding eigenvalues y_i of B satisfy $|x_i| = \frac{(\text{Tr} A^2)^{1/2}}{\sqrt{n(n-1)}}$, $x_i x_j \geq 0$, $y_i = -\frac{(\text{Tr} B^2)^{1/2}}{\sqrt{n(n-1)}}$ (resp. $y_i = \frac{(\text{Tr} B^2)^{1/2}}{\sqrt{n(n-1)}}$).

Choose a suitable normal frame field $\{e_\beta\}_{\beta=1}^{n+p}$ such that $S_{\alpha \beta} = 0$ for all $\alpha \neq \beta$. Then

$$\sum_{\alpha,\beta > n+1} S_{\alpha \beta}^2 = \sum_{\beta > n+1} S_{\beta}^2 \leq S_I^2,$$

where the equality holds if and only if at least $p-2$ numbers of S_{α}’s are zero.

Taking sum with respect to $\alpha > n+1$ on both-sides of (14), we have

$$\sum_{i,j,\alpha > n+1} h_{ij}^\alpha \Delta h_{ij}^\alpha = (n c - n H^2)S_I - nH \sum_{\alpha > n+1} \text{Tr}(L_{\alpha L_{\alpha}}^{2n+1})$$

$$+ \sum_{\alpha > n+1} S_{\alpha}^2 + \sum_{\alpha > n+1} S_{\alpha}^2.$$\hspace{1cm} (38)

Using the left hand side of (36) to $\text{Tr}(L_{\alpha L_{\alpha}}^{2n+1})$, we have

$$\text{Tr}(L_{\alpha L_{\alpha}}^{2n+1}) \leq (n-2)S_{\alpha} \sqrt{\frac{S_{n+1}}{n(n-1)}}.$$
Substituting this into (38) and using (23) and (37), we have
\[(39) \quad \sum_{i,j,\alpha>n+1} h_{ij}^\alpha \Delta h_{ij}^\alpha \geq S_I \left\{ (nc - nH^2) - n(n-2)H \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}} + \bar{S}_{n+1} \right\}. \]

Substituting (32) into (26), we have
\[(40) \quad \sum_{i,j} h_{n+1}^{ij} \Delta h_{n+1}^{ij} \geq n\Box H + \frac{1}{2} \Delta (n^2H^2) - n^2|\nabla H|^2 + \bar{S}_{n+1} \left\{ (nc - nH^2) - n(n-2)H \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}} + \bar{S}_{n+1} \right\}. \]

Note that \[\Delta S = \Delta (n^2H^2) \] and
\[\frac{1}{2} \Delta S = \sum_{i,j,k,\alpha} (h_{ij,k}^\alpha)^2 + \sum_{i,j} h_{n+1}^{ij} \Delta h_{n+1}^{ij} + \sum_{i,j,\alpha>n+1} h_{ij}^\alpha \Delta h_{ij}^\alpha. \]

From (39) and (40), we obtain
\[(41) \quad 0 \geq n\Box H + \sum_{(i,j,k,\alpha)} (h_{ij,k}^\alpha)^2 - n^2|\nabla H|^2 + \bar{S} \left\{ (nc - nH^2) - n(n-2)H \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}} + \bar{S}_{n+1} \right\}. \]

Consider the quadratic form \[Q(u,t) = u^2 - \frac{n-2}{\sqrt{n-1}} ut - t^2. \] By the orthogonal transformation
\[\begin{align*}
\bar{u} &= \frac{1}{\sqrt{2n}} \left\{ (1 + \sqrt{n-1})u + (1 - \sqrt{n-1})t \right\} \\
\bar{t} &= \frac{1}{\sqrt{2n}} \left\{ (\sqrt{n-1} - 1)u + (\sqrt{n-1} + 1)t \right\}
\end{align*} \]

\[Q(u,t) \] turns into \[Q(u,t) = \frac{n}{2\sqrt{n-1}} (\bar{u}^2 - \bar{t}^2), \] where \(\bar{u}^2 + \bar{t}^2 = u^2 + t^2. \)

Take \(u = \sqrt{\bar{S}_{n+1}}, t = \sqrt{n}H, \) then
\[nc - nH^2 - n(n-2)H \sqrt{\frac{\bar{S}_{n+1}}{n(n-1)}} + \bar{S}_{n+1} \geq nc - n\bar{S}_{n+1} \frac{2\sqrt{n}}{2\sqrt{n-1}} + \frac{\bar{u}^2}{\sqrt{n-1}} \]
\[\geq nc - \frac{n\bar{S}_{n+1}}{2\sqrt{n-1}} \]
\[(43) \]
Note that
\(\bar{S}_{n+1} \leq \bar{S}_{n+1} + S_I = \bar{S}. \)

From (43), (44) and (27) we have
\(0 \geq n \Box H + \bar{S} \left\{ nc - \frac{n \bar{S}}{2\sqrt{n - 1}} \right\}. \)

Integrating the both sides of (45) on \(M^n \), we have
\(0 \geq \int_M \bar{S} \left\{ nc - \frac{n \bar{S}}{2\sqrt{n - 1}} \right\} * 1. \)

Therefore we can prove the following

Theorem 4.2. Let \(M^n \) \((n \geq 3)\) be a closed space-like submanifold with parallel normalized mean curvature vector field immersed into \(M_{p+p}(c) \). Suppose that \(R \) is constant and \(\bar{R} = c - R > 0 \). If the normal bundle \(N(M) \) is flat and
\(S < nH^2 + 2\sqrt{n - 1}c, \)
then \(S = nH^2 \) and \(M^n \) is umbilical (hence isometric to a sphere).

Proof. Denote \(\bar{R} = c - R \). Then \(\bar{S} = n(n - 1)(H^2 - \bar{R}) \) and \(S = n\bar{R} + n^2(H^2 - \bar{R}) \). Since \(n \geq 3 \), we have
\(nc - \frac{n \bar{S}}{2\sqrt{n - 1}} = n(c - \frac{n(n - 1)(H^2 - \bar{R})}{2\sqrt{n - 1}}) = n(c - \frac{S - nH^2}{2\sqrt{n - 1}}). \)

It is clear that the condition (47) is equivalent to
\(nc - \frac{\bar{S}}{2\sqrt{n - 1}} > 0. \)

From (46) and (49) we have \(\bar{S} = 0 \) on \(M^n \), so \(H^2 = \bar{R} \) and \(S = n\bar{R} \), that is \(S = nH^2 \). Since \(H \) is constant on \(M^n \), hence \(\xi \) is parallel, from Theorem 3 of [1] we know that \(M^n \) is totally umbilical.

References

Department of Applied Mathematics
Dalian University of Technology
Dalian 116024, China

and

Institute of Mathematics
Academy of Mathematics and Systems Sciences
Chinese Academy of Sciences
Beijing 100080, China

E-mail: xmliu@dlut.edu.cn