\textbf{\textit{\omega}}-LIMIT SETS FOR MAPS OF THE CIRCLE

SEONG HOON CHO

Abstract. For a continuous map of the circle to itself, we give necessary and sufficient conditions for the \textit{\omega}-limit set of each nonwandering point to be minimal.

1. Introduction

Let S^1 be the circle. Throughout this paper f will denote a continuous map of the circle to itself. For any positive integer n, we define $f^1 = f$ and $f^{n+1} = f \circ f^n$. Let f^0 be the identity map of the circle. Let $AP(f), P(f), R(f), \Gamma(f), \Lambda(f)$ and $\Omega(f)$ denote the set of almost periodic points, periodic points, recurrent points, γ-limit points, ω-limit points and nonwandering points of f, respectively.

A subset Y in S^1 is called invariant if $f(Y) \subset Y$, and strongly invariant if $f(Y) = Y$. Suppose $Y \subset S^1$ is non-void, closed and invariant relative to f.

If Y has no proper subset which is non-void and invariant relative to f, then Y is said to be a minimal set.

J. C. Xiong [4,5] proved that for any continuous map g of the interval, the following conditions are equivalent.

(1) $\Gamma(g) = AP(g)$.

(2) The period of each periodic point of g is a power of 2.

In this paper, we obtain the following theorem for maps of the circle.

\textbf{Theorem 5.} Suppose that f is a continuous map of the circle. Then the following conditions are equivalent:

(1) $\Gamma(f) = AP(f)$.

Received February 8, 2000. Revised June 20, 2000.
2000 Mathematics Subject Classification: 37C25, 37E10.
Key words and phrases: almost periodic points, ω-limit points, γ-limit points, α-limit points.
(2) For every \(x \in \Omega(f) \), the \(\omega \)-limit set \(\omega(x, f) \) of \(x \) is minimal.

In 1986, L. Block and E. M. Coven [3] proved that for a continuous map \(g \) of the interval, if \(x \in \Lambda(g) \setminus \overline{R(g)} \), then \(\omega(x, g) \) is infinite minimal, and if \(x \in \Omega(g) \setminus \overline{R(g)} \), then \(\omega(x, g) \) need not be minimal. We have the following theorem for maps of the circle.

Theorem 6. Suppose that \(f \) is a continuous map of the circle. Let \(R(f) \) be closed, \(x \in \Omega(f) \), \(f^{kN}(x) = p \in F(f^N) \) and \(x \in \text{int}(W_i) \) for some \(i \). If \(x \in \Omega(f) \setminus \overline{R(f)} \), then \(\omega(x, f) \) is infinite minimal.

2. Preliminaries and Definitions

Let \(f \) be a continuous map of the circle \(S^1 \) to itself. The orbit \(\text{Orb}(x) \) of \(x \in S^1 \) is the set \(\{ f^k(x) | k = 1, 2, \cdots \} \). A point \(x \in S^1 \) is a fixed point of \(f \) if \(f(x) = x \) and we denote the set of fixed points by \(F(f) \). A point \(x \in S^1 \) is a periodic point of \(f \) provided that for some positive integer \(n \), \(f^n(x) = x \). The period of \(x \) is the least such integer \(n \). We denote the set of periodic points of \(f \) by \(P(f) \).

A point \(x \in S^1 \) is a recurrent point of \(f \) provided that there exists a sequence \(\{ n_i \} \) of positive integers with \(n_i \to \infty \) such that \(f^{n_i}(x) \to x \), or equivalently, \(f^n(x) \to x \). We denote the set of recurrent points of \(f \) by \(R(f) \).

A point \(x \in S^1 \) is called a nonwandering point of \(f \) provided that for every neighborhood \(U \) of \(x \), there exists a positive integer \(m \) such that \(f^m(U) \cap U \neq \emptyset \). We denote the set of nonwandering points of \(f \) by \(\Omega(f) \).

A point \(x \in S^1 \) is almost periodic point of \(f \) provided that for any \(\epsilon > 0 \) one can find an integer \(n > 0 \) with the following property that for any integer \(q > 0 \) there exists an integer \(r \) with \(q \leq r < q + n \) such that \(d(f^r(x), x) < \epsilon \), where \(d \) is the metric of \(S^1 \). We denote the set of almost periodic points of \(f \) by \(AP(f) \).

J. C. Xiong [4] investigated the set \(AP(g) \) of almost periodic points of a continuous map \(g \) of the interval and proved the followings.

\(AP(g) = P(g) \) if and only if \(\Omega(g) = P(g) \), and \(AP(g) \) is closed if and only if \(R(g) \) is closed. Also, if \(g \) has a periodic point of period which is not a power of 2, then \(AP(g) - P(g) \neq \emptyset \) and \(R(g) - AP(g) \neq \emptyset \), and if
the period of each periodic point of \(g \) is power of 2, then \(R(g) = AP(g) \). Therefore the period of each periodic point of \(g \) is power of 2 if and only if \(R(g) = AP(g) \).

A point \(y \in S^1 \) is called an \(\omega \)-limit point of \(x \in S^1 \) provided that there exists a sequence \(\{n_i\} \) of positive integers with \(n_i \to \infty \) such that \(f^{n_i}(x) \to y \). We denote the set of \(\omega \)-limit points of \(x \) by \(\omega(x, f) \). Define \(\Lambda(f) = \bigcup_{x \in S^1} \omega(x, f) \).

A point \(y \in S^1 \) is called an \(\alpha \)-limit point of \(x \in S^1 \) if there exist a sequence \(\{n_i\} \) of positive integers with \(n_i \to \infty \) and a sequence \(\{x_i\} \) of points in \(S^1 \) with \(x_i \to x \) such that \(f^{n_i}(x_i) = y \) for all \(i \geq 1 \). We denote the set of \(\alpha \)-limit points of \(x \) by \(\alpha(x, f) \).

A point \(x \in S^1 \) is called a \(\gamma \)-limit point of \(y \in S^1 \) if \(x \in \omega(y, f) \cap \alpha(y, f) \). Define \(\Gamma(f) = \bigcup_{x \in S^1} \{\omega(x, f) \cap \alpha(x, f)\} \).

For a fixed point \(p \) of \(f \) and a side \(S \), the one-side unstable set of \(p \) is

\[
W^u(p, f, s) = \cap_u \bigcup_{k \geq 0} f^k(U),
\]

where the intersection is taken over all \(s \)-half-neighborhoods \(U \) of \(p \). Let \(p \) be a fixed point of \(f^N \) and \(S_i \) a side at \(f^i(p) \) for each \(i \). We denote \(W_i \) by \(W^u(f^i(p), f^N, S_i) \) for each \(i \).

3. Main results

The following lemmas appear in [1], [2], [4] and [6].

Lemma 1 [1]. Suppose that \(f \) is a continuous map of the circle \(S^1 \) to itself. Then

\[
P(f) \subset AP(f) \subset R(f) \subset \Gamma(f) \subset \overline{R(f)} \subset \Lambda(f) \subset \Omega(f).
\]

Lemma 2 [4]. Suppose that \(f \) is a continuous map of the circle \(S^1 \) to itself. Then \(x \in AP(f) \) if and only if \(x \in \omega(x, f) \) and \(\omega(x, f) \) is minimal.

Lemma 3 [6]. Suppose that \(f \) is a continuous map of the circle. Then

\[
\Lambda(\Omega(f)) = \Lambda(\Gamma(f)) = \Gamma(f).
\]
Lemma 4 [2]. Suppose that f is a continuous map of the circle. If $x \in \Omega(f)$ has a finite orbit, $f^{kN}(x) = p \in F(f^N)$ and $x \in \text{int}(W_i)$ for some i, then $x \in \overline{R(f)}$.

Proof of Theorem 5 (1) \Rightarrow (2) : Suppose that $\Gamma(f) = AP(f)$. Let x be any point in $\Omega(f)$, and let y be arbitrary point in $\omega(x, f)$. Let $z \in \omega(y, f)$. Then there exists a sequence of positive integers $n_i \to \infty$ such that $f^{n_i}(y) \to z$. Since $y \in \omega(x, f)$, there exists a sequence of positive integers $m_i \to \infty$ such that $f^{m_i}(x) \to y$. Hence $f^{m_i+n_i}(x) \to z$. Thus $z \in \omega(x, f)$. Hence $\omega(y, f) \subset \omega(x, f)$.

Since y is arbitrary point in $\omega(x, f)$, it suffices to show that $y \in \omega(y, f)$. Since $x \in \Omega(f)$, $\omega(x, f) \subset \Lambda(\Omega(f))$. By Lemma 3, $y \in \omega(x, f) \subset \Gamma(f)$. Since $\Gamma(f) = AP(f)$, $y \in AP(f)$. By Lemma 2, $y \in \omega(y, f)$. Hence $\omega(x, f) \subset \omega(y, f)$. Therefore $\omega(x, f) = \omega(y, f)$ and $\omega(x, f)$ is minimal.

(2) \Rightarrow (1) : Suppose that for any $x \in \Omega(f)$, $\omega(x, f)$ is minimal. Let $y \in \Gamma(f)$. Then by Lemma 3, $y \in \Lambda(\Omega(f))$. There is $z \in \Omega(f)$ such that $y \in \omega(z, f)$. Since $\omega(z, f)$ is minimal, $\omega(y, f) = \omega(z, f)$. Hence $y \in \omega(y, f)$. By Lemma 1, $y \in \Omega(f)$. So $\omega(y, f)$ is minimal. Thus, by Lemma 2, $y \in AP(f)$. Therefore $\Gamma(f) \subset AP(f)$.

Corollary 1. Suppose that f is a continuous map of the circle. Let $R(f)$ be closed. Then the following conditions are equivalent:

(1) $R(f) = AP(f)$.
(3) For every $x \in \Omega(f)$, the ω-limit set $\omega(x, f)$ of x is minimal.

Proof of Theorem 6 Suppose that $R(f)$ is closed. Let $x \in \text{int}(W_i)$ for some i and $x \in \Omega(f) \setminus \overline{R(f)}$. Since $R(f)$ is closed, by Lemma 1, $\Gamma(f) = R(f)$. By Theorem 5, $\omega(x, f)$ is minimal. Now we show that $\omega(x, f)$ is infinite. Assume that $\omega(x, f)$ is finite. Since $\omega(x, f)$ is closed and invariant, $\omega(x, f) = \overline{\text{Orb}(x, f)}$ by definition. Then $\overline{\text{Orb}(x, f)}$ is finite. Hence $\text{Orb}(x, f)$ is finite, a contradiction.

The set $\Omega(f)$ of nonwandering points of f is always closed and invariant and $P(f) = P(f^n) \subset \Omega(f^n) \subset \Omega(f)$ holds for all n. It is well known that $R(f) = R(f^n)$ for all n. Therefore we have the following corollary.
Corollary 2. Suppose that \(f \) is a continuous map of the circle. Let \(R(f) \) be closed, \(x \in \Omega(f) \), \(f^{kN}(x) = p \in F(f^N) \) and \(x \in \text{int}(W_i) \) for some \(i \). If \(x \in \Omega(f^n) \setminus R(f) \), then \(\omega(x, f) \) is minimal.

References

Department of mathematics
Hanseo university
Chungnam, 356-820, Korea