NONWANDERING POINTS OF A MAP ON THE CIRCLE

JONG SOOK BAE1, SEONG HOON CHO2,
KYUNG JIN MIN AND SEUNG KAB YANG

ABSTRACT. In this paper, we will show that for any continuous map \(f \) of the circle, if the set of periodic points of \(f \) is empty, then the set of recurrent point of \(f \) equals the set of nonwandering points of \(f \).

\section{Introduction}

In study of the dynamics of a map \(f \) from a topological space \(X \) to itself, a central role is played by the various recursive properties of the points of \(X \). One such property is periodicity. A weaker property is that of being nonwandering. Intermediate recursive properties include almost periodicity and recurrence.

Let \(C^0(X, X) \) denote the set of continuous maps from \(X \) into itself. And for any \(f \in C^0(X, X) \), let \(P(f), R(f), \Lambda(f), \Gamma(f) \) and \(\Omega(f) \) denote the set of periodic points, recurrent points, \(\omega \)-limit points, \(\gamma \)-limit points and nonwandering points of \(f \), respectively.

In 1988, J.C.Xiong \[4\] proved the following sequence of the sets and inclusion relation hold;

\[P(f) \subset R(f) \subset \Gamma(f) \subset \overline{P(f)} \subset \Lambda(f) \subset \Omega(f) \]

for any continuous map \(f \) of the interval \(I \). But the equalities need not hold.

For a continuous map \(f \) of the circle \(S^1 \), J.S.Bae, S.H.Cho and S.K.Yang \[2\] obtained the similar result;

\[P(f) \subset R(f) \subset \Gamma(f) \subset \overline{R(f)} \subset \Lambda(f) \subset \Omega(f). \]
Also, in this case, the equalities need not hold.

On the other hand, in 1983, L. Block, E. Coven, I. Mulvey and Z. Nitecki [1] showed that for any continuous map f of the circle, if $P(f)$ is closed and non-empty, then $P(f) = \Omega(f)$, and hence

$$ (P(f) =) R(f) = \cdots = \Omega(f). $$

In this paper, we will show that the above equalities hold unless $P(f)$ is non-empty. Consequently, we obtain the following result.

Theorem A. For any $f \in C^0(S^1, S^1)$, if $P(f)$ is empty, then

$$ R(f) = \Gamma(f) = \overline{K(f)} = \Lambda(f) = \Omega(f). $$

§ 2. Preliminaries and definitions

Let (X, d) be a metric space and $f \in C^0(X, X)$. And let $f^{n+1} = f \circ f^n$, for $n = 1, 2, 3, \cdots$

A point $x \in X$ is called a *recurrent point* of f if there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to x$. We denote the set of recurrent points of f by $R(f)$.

A point $x \in X$ is called a *nonwandering point* of f if for every neighborhood U of x, there exists a positive integer m such that $f^m(U) \cap U \neq \emptyset$. We denote the set of nonwandering points of f by $\Omega(f)$.

A point $y \in X$ is called an *ω-limit point* of $x \in X$ if there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to y$. We denote the set of ω-limit points of x by $\omega(x)$. Define $\Lambda(f) = \bigcup_{x \in X} \omega(x)$.

A point $y \in X$ is called an *α-limit point* of $x \in X$ if there exist a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ and a sequence $\{y_i\}$ of points such that $f^{n_i}(y_i) = x$ and $y_i \to y$. The symbol $\alpha(x)$ denotes the set of α-limit points of $x \in X$.

A point $y \in X$ is called a *γ-limit point* of x if $y \in \omega(x) \cap \alpha(x)$. The symbol $\gamma(x)$ denotes the set of γ-limit points of x and $\Gamma(f) = \bigcup_{x \in X} \gamma(x)$.

Let $x \in S^1$ and $f \in C^0(S^1, S^1)$ be given. Then we will use the symbol $\omega_+(x)$ (resp. $\omega_-(x)$) to denote the set of all points $y \in S^1$ such that there
exists a sequence \(\{n_i\} \) of positive integers with \(n_i \to \infty \) such that \(f^{n_i}(x) \to y \) and

\[
y < \cdots < f^{n_1}(x) < \cdots < f^{n_2}(x) < f^{n_1}(x)
\]

(resp. \(f^{n_1}(x) < f^{n_2}(x) < \cdots < f^{n_1}(x) < \cdots < y \)).

A set \(E \subset X \) is said to be \textit{invariant} under \(f \) if \(f(E) \subset E \). It is clear that \(P(f) \), \(R(f) \), \(\Lambda(f) \), \(\Gamma(f) \) and \(\Omega(f) \) are invariant under \(f \).

Let \(R \) be the set of reals and \(Z \) be the set of integers. Formally, we will think of the circle \(S^1 \) as \(R/Z \) and use \(\pi : R \to R/Z \) to denote the canonical projection. In fact, the map \(\pi : R \to S^1 \) is an example of a covering map, since it wraps \(R \) around \(S^1 \) without doubling back (i.e., without critical points). To study the dynamics of the circle map, it is helpful to using a lifting.

Let \(f \) be a continuous map on the circle. We say that a continuous map \(F \) from \(R \) to itself is a lifting of \(f \) if \(f \circ \pi = \pi \circ F \).

We will use the following notations throughout this paper.

Let \(a, b \in S^1 \) with \(a \neq b \), and let \(A \in \pi^{-1}(a) \), \(B \in \pi^{-1}(b) \) with \(|A - B| < 1 \) and \(A < B \). Then we write \(\pi((A, B)), \pi([A, B]), \pi([A, B)) \) and \(\pi((A, B]) \) to denote the open, closed and half-open arcs from \(a \) counterclockwise to \(b \), respectively, and we denote it by \((a, b) \), \([a, b] \), \([a, b) \) and \((a, b] \).

For \(x, y \in [a, b] \) with \(a \neq b \), let \(X \in \pi^{-1}(x) \), \(Y \in \pi^{-1}(y) \) with \(X, Y \in [A, B] \), then we define for \(x, y \in [a, b] \), \(x > y \) if and only if \(X > Y \). Let \(C \) be a subset of a closed arc \([a, b] \), then we define \(\sup C = \pi(\sup(\pi^{-1}(C) \cap [A, B])) \) and \(\inf C = \pi(\inf(\pi^{-1}(C) \cap [A, B])) \). In particular, for \(a, b, c \in S^1 \), \(a < b < c \) means that \(b \) lies in the open arc \((a, c) \), that is, \(b \in (a, c) \).

Now we consider the notation of an \(f \)-\textit{covering}. The important property of an \(f \)-covering lies in the fact that if \(J \) \(f^n \)-covers itself for some \(n \), then \(f \) has a period point in \(J \).

Definition 2.1. Let \(X \) be \(I \) or \(S^1 \) and \(f \in C^0(X, X) \). Let \(J \) and \(K \) be two closed intervals in \(X \). We say that \(J \) \(f \)-covers \(K \) if there is a closed subinterval \(L \subset J \) such that \(f(L) = K \).

The following two lemmas appear in [3].
LEMMA 2.2. [3, Lemma 2] Let X be S^1 or I and $f \in C^0(X, X)$. Let J and K be proper closed intervals in X such that J f-covers K. If L is a closed interval with $L \subset K$, then J f-covers L.

LEMMA 2.3. [3, Lemma 3] Let $f \in C^0(I, I)$. Suppose that J is a proper closed interval in X such that J f-covers K or $f(J) \subset J$. Then f has a fixed point in J.

§ 3. Main Result

The following lemma appears in [2].

LEMMA 3.1. [2] For any $f \in C^0(S^1, S^1)$, $x \in \Omega(f)$ if and only if $x \in \alpha(x)$.

LEMMA 3.2. Let $f \in C^0(S^1, S^1)$ and $I = [a, b]$ be an arc for some $a, b \in S^1$ with $a \neq b$, and let $I \cap P(f) = \emptyset$.

(a) Suppose that there exists $x \in I$ such that $f(x) \in I$ and $x < f(x)$.

1. if $y \in I$, $x < y$ and $f(y) \notin [y, b]$, then $[x, y] f$-covers $[f(x), b]$,
2. if $y \in I$, $x > y$ and $f(y) \notin [y, b]$, then $[y, x] f$-covers $[f(x), b]$.

(b) Suppose that there exists $x \in I$ such that $f(x) \in I$ and $x > f(x)$.

1. if $y \in I$, $x < y$ and $f(y) \notin [a, y]$, then $[x, y] f$-covers $[a, f(x)]$,
2. if $y \in I$, $y < x$ and $f(y) \notin [a, y]$, then $[y, x] f$-covers $[a, f(x)]$.

Proof. We prove only part (a) because of the symmetry. Let $A, B \in R$ with $A < B$ such that $\pi((A, B)) = (a, b)$, and let $X \in (A, B) \cap \pi^{-1}(x)$. Then we can take a lifting F of f with $F(X) \in (A, B)$ by assumption, we know that $A < X < F(X) < B$.

1. Let $Y \in (A, B) \cap \pi^{-1}(y)$. Then $F(Y) \notin (Y + N, B + N)$ for any integer N. If $y > x$, then $Y > X$, and hence $F(Y) > Y$ because also F has no periodic points in $[A, B]$. Since $F(Y) \notin (Y + N, B + N)$ for any integer N, $F(Y) > B > F(X)$. Hence $[X, Y] F$-covers $[F(X), B]$, so that $[x, y] f$-covers $[f(x), b]$.

2. Let $Y \in (A, B) \cap \pi^{-1}(y)$. Then $F(Y) \notin (Y + N, B + N)$ for any integer N. If $y < x$, then $Y < X$, and hence $F(Y) > Y$. Therefore we
have \(F(Y) > B > F(X) \), so that \([Y, X]\) \(F \)-covers \([F(X), B]\), and hence \([y, x]\) \(f \)-covers \([f(x), b]\).

Lemma 3.3. Let \(f \in C^0(S^1, S^1) \) and \(P(f) = \phi \). Then
\[
\overline{R(f)} \subset \Gamma(f).
\]

Proof. Without loss of generality, we assume that \(x \in \overline{R(f)} \setminus R(f) \). Then there exists an open arc \((a, b)\) in \(S^1 \) containing \(x \) such that \(f^n(x) \notin (a, b) \) for any positive integer \(n \), and hence we may assume that there exists a sequence \(\{x_i\} \) of points with \(x_i \in R(f) \) such that \(a < x_1 < x_2 < \cdots < x_i < \cdots < x < b \) and \(x_i \to x \). For each \(i = 1, 2, \ldots \), there exist \(y_i, z_i \in (x_{i-1}, x_{i+1}) \) and \(n_i, m_i \) with \(n_i < m_i \) such that
\[
x_{i-1} < f^{n_i}(y_i) < y_i < x_{i+1} < x
\]
and
\[
x_{i-1} < z_i < f^{m_i}(z_i) < x_{i+1} < x.
\]
By Lemma 3.2,
\[
[y_i, x] \ f^{n_i} \text{-covers } [a, f^{n_i}(y_i)]
\]
and
\[
[z_i, x] \ f^{m_i} \text{-covers } [f^{m_i}(z_i), b].
\]
Consequently,
\[
(*) \quad [x_{i-1}, x] \ f^{n_i} \text{-covers } [x_1, x_{i-1}] \quad \text{for each } i,
\]
and
\[
(**) \quad [x_{i-1}, x] \ f^{m_i} \text{-covers } [x_{i+1}, x] \quad \text{for each } i.
\]
Now, let \(K_i = [x_i, x] \) for all positive integer \(i \), Then \(K_i \ f^{m_i} \text{-covers } K_{i+1} \). Hence we may choose a closed arc \(L_1 \) in \(K_1 \) such that \(f^{m_1}(L_1) = K_3 \). Also, we can take a closed arc \(L_2 \) in \(L_1 \) such that \(f^{m_1+m_3}(L_2) = K_5 \). Continuing this process, we may take a closed arc \(L_i \subset K_1 \) such that \(L_1 \supset L_2 \supset \cdots \) and \(\sum_{i=1}^{\infty} m_{2i-1} (L_i) = K_{2k+1} \) for each \(k = 1, 2, \ldots \). Let \(y \in \bigcap_{i=1}^{\infty} L_i \). Then \(x \in \omega(y) \) and \(y \in [x_1, x] \). Now, take \(N \) such that \(x_{N-1} > y \). By \((*)\), for all \(i \geq N \), there exists \(y_i \in [x_{i-1}, x] \) such that \(f^{n_i}(y_i) = y \). Since \(x_i \to x \), we have \(y_i \to x \), and hence \(x \in \alpha(y) \).

Thus \(x \in \omega(y) \cap \alpha(y) \subset \Gamma(f) \).

The following lemma appears in [2].
Lemma 3.4. [2] Let \(f \in C^0(S^1, S^1) \). Then we have

\[
\Gamma(f) \subset R(f) \cup \overline{P(f)}.
\]

By using Lemma 3.3 and Lemma 3.4, we have the following proposition.

Proposition 3.5. Let \(f \in C^0(S^1, S^1) \) and \(P(f) = \phi \). Then we have \(R(f) = \Gamma(f) = \overline{R(f)} \), and hence \(R(f) \) is closed.

Proof. Suppose that \(P(f) = \phi \). Then by Lemma 3.3, we have \(\overline{R(f)} \subset \Gamma(f) \), and by Lemma 3.4, we know that \(\Gamma(f) \subset R(f) \). Therefore, we conclude \(R(f) = \Gamma(f) = \overline{R(f)} \).

Theorem A. For any \(f \in C^0(S^1, S^1) \), if \(P(f) \) is empty, then

\[
R(f) = \Gamma(f) = \overline{R(f)} = \Lambda(f) = \Omega(f).
\]

Proof. Let \(x \in \Omega(f) \setminus R(f) \) and \(D \) be a connected component of \(S^1 \setminus R(f) \) containing \(x \). By Proposition 3.5, \(R(f) \) is closed, and hence \(D = (a, b) \) for some \(a, b \in S^1 \) with \(a \neq b \). Then we know that \(a, b \in R(f) \). Since \(R(f) \) is invariant under \(f \), \(a \in \omega_-(a) \) and \(b \in \omega_+(b) \). And since \(x \in \Omega(f) \cap D \), there exists \(k > 0 \) such that \(f^k(D) \cap D \neq \phi \). Therefore, there exists a point \(y \in D \) with \(f^k(y) \in D \). Without loss of generality, we may assume that \(a < y < f^k(y) < b \). Then we know that \([y, b] \) \(f^k \)-covers \([f^k(y), f^k(b)]\) by Lemma 3.2, and \(b \in (f^k(y), f^k(b)) \) since \(f^k(b) \in R(f) \subset [b, a] \) and \(f^k(b) \neq b \). Since \(b \in \omega_+(b) \), there exist positive integers \(m, n \) such that \(b < f^{m+n}(b) < f^m(b) < f^k(b) \). Especially,

\[
[y, b] \quad f^k \text{-covers} \quad [b, f^m(b)].
\]

On the other hand, since \(f^n(b) \notin (a, b) = D \), by Lemma 3.2,

\[
[b, f^m(b)] \quad f^n \text{-covers} \quad [a, f^{m+n}(b)].
\]

In particular,

\[
[b, f^m(b)] \quad f^n \text{-covers} \quad [y, b]
\]

By Lemma 2.2, \([y, b] \) \(f^{n+k} \)-covers itself, and hence \(f \) has a periodic point in \([a, b] \) by Lemma 2.3, which is a contradiction.

The proof of Theorem A is complete.
Nonwandering points of a map on the circle

References

Jong Sook Bae, Kyung Jin Min and Seung Kab Yang
Deparment of Mathematics
MyongJi University
Yongin, 449-728, Korea
E-mail: 1 jsbae@wh.myongji.ac.kr.

Seong Hoon Cho
Deparment of Mathematics
Hanseo University
Chungnam 356-820, Korea