THE INDEX OF THE CORESTRICTION
OF A VALUED DIVISION ALGEBRA

Yoon Sung Hwang

ABSTRACT. Let L/F be a finite separable extension of Henselian valued fields with same residue fields $\bar{L} = \bar{F}$. Let D be an inertially split division algebra over L, and let $\mathcal{C}D$ be the underlying division algebra of the corestriction $\text{cor}_{L/F}(D)$ of D. We show that the index $\text{ind}(\mathcal{C}D)$ of $\mathcal{C}D$ divides $[Z(\bar{D}) : Z(\mathcal{C}D)] \cdot \text{ind}(D)$, where $Z(\bar{D})$ is the center of the residue division ring \bar{D}.

For any finite separable extension L/F of fields and any central simple algebra A over L, the corestriction of A is a central simple F-algebra obtained as the fixed point algebra under a Galois group action (cf. [Ri]). This induces the map from the Brauer group $\text{Br}(L)$ to $\text{Br}(F)$ corresponding to the homological corestriction. Though this algebraic corestriction is an important tool in the theory of division algebras, it is actually very hard to work with. To gain a better insight into the behavior of the corestriction, we analyze here the corestriction for valued division algebras over Henselian valued fields, for which there is a well-developed structure theory.

For any ring R we write $Z(R)$ and R^* for the center of R and the group of units of R, respectively. We will consider only central simple algebras A finite-dimensional over a field F. By Wedderburn’s theorem, $A \cong M_n(D)$, a matrix ring over a division algebra D, which is called the underlying division algebra of A.

A valued field (F, v) is called Henselian if v extends uniquely to each field algebraic over F. For a nice account for several other characterizations of Henselian valuations, see Ribenboim’s paper [Rb]. Recall (e.g. from [W]) that if D is a central division algebra over a Henselian valued field (F, v), there exists one and only one valuation on D extending v on F.
For a central L-division algebra D, $^c D$ denote the underlying division algebra of the corestriction $\text{cor}_{L/F}(D)$ of D. The index $\text{ind}(^c D)$ of $^c D$ divides $\text{ind}(D)^{[L:F]}$. ([D, Lemma 7, p. 54]) We will show that when D is inertially split over L and L/F is a finite separable extension of Henselian valued fields with same residue fields $\overline{L}=\overline{F}$, the index $\text{ind}(^c D)$ of $^c D$ divides $[Z(D): Z(^c D)] \cdot \text{ind}(D)$, where $Z(D)$ is the center of the residue division ring \overline{D}. (See below for terminology.)

We now fix most of the basic terminology and notation that we will employ throughout this paper.

Let $(L, v) \supseteq (F, v)$ be a finite separable extension of Henselian fields. We say that L is inertial (or unramified) over F if $[\overline{L}: \overline{F}] = [L: F]$ and \overline{L} is separable over \overline{F}.

Let (F, v) be a Henselian valued field. Let D be a central division F-algebra (with a unique valuation extending v on F). We say D is tame and totally ramified (or D is tame) over F if $\text{char}(\overline{F}) \mid [D: F]$ and $|\Gamma_D : \Gamma_F| = [D: F]$. D is said to be inertially split over F if D is split by F_{nr} where F_{nr} is the maximal unramified extension in some algebraic closure of F. Also, D is said to be tame if $\text{char}(\overline{F}) = 0$ or $\text{char}(\overline{F}) = q \neq 0$ and the q-primary component of D is split by F_{nr}. (See [JW, Lemma 5.1] and [JW, Lemma 6.1] for other characterizations of inertially split and tame division algebras.) Recall also that D is said to be inertial over F if $[\overline{D}: \overline{F}] = [D: F]$ and $Z(D) = \overline{F}$. D is said to be nicely semiramified over F if D has a maximal subfield L which is inertial over F, and another maximal subfield K which is totally ramified of radical type over F. (Then, $\overline{D} = \overline{L}, \Gamma_D = \Gamma_K$ and $[\overline{D}: \overline{F}] = |\Gamma_D : \Gamma_F| = \text{ind}(D)$.) (See [JW, Sec. 4].) Let

$$\mathcal{D}(F) = \{D \mid D \text{ is a central division } F\text{-algebra with } [D: F] < \infty\}$$

$$\mathcal{D}_{ttr} = \{D \in \mathcal{D}(F) \mid D \text{ is tame and totally ramified over } F\}$$

$$\mathcal{D}_i(F) = \{D \in \mathcal{D}(F) \mid D \text{ is inertial over } F\}$$

$$\mathcal{D}_{is}(F) = \{D \in \mathcal{D}(F) \mid D \text{ is inertially split over } F\} \text{ and}$$

$$\mathcal{D}_t(F) = \{D \in \mathcal{D}(F) \mid D \text{ is tame over } F\}.$$

It is clear that $\mathcal{D}_t(F) \subseteq \mathcal{D}_{is}(F) \subseteq \mathcal{D}_i(F)$ and $\mathcal{D}_{ttr}(F) \subseteq \mathcal{D}_i(F)$.

$(K/F, \sigma, a)_y$ is the cyclic F-algebra generated over K by a single element x with defining relations $x\sigma x^{-1} = \sigma(c)$ for all $c \in K$ and $x^n = a \in F^*$, where K is a Galois extension of F with cyclic Galois group generated by σ and $n = [K: F]$.
Now, we give a lemma to compute the corestriction $\text{cor}_{L/F}(D)$ of D of a NSR cyclic division algebra D over L when L/F is a finite separable extension of Henselian valued fields with $\overline{L} = \overline{F}$.

Lemma 1. Let L/F be a finite separable extension of Henselian valued fields with same residue fields $\overline{L} = \overline{F}$. Let $D = (M'/L, \sigma, \alpha)'$ be a NSR cyclic division algebra over L. (So, M'/L is inertial with cyclic Galois group generated by σ.) Let M be the inertial lift of M' over F. Then,

$$\text{cor}_{L/F}(D) \sim (M/F, \sigma, N_{L/F}(\alpha))'',$$

where $N_{L/F}$ is the norm map from L to F.

Proof. Let $L_{\text{sep}} = F_{\text{sep}}$ be the separable closure of L and F. Let $G = \text{Gal}(F_{\text{sep}}/F)$ and $H = \text{Gal}(L_{\text{sep}}/L)$

Since M/F is Galois and $L \cap M = F$, L and M are linearly disjoint over F and $L \otimes_F M$ is the field $L \cdot M = M'$. Let $N = \text{Gal}(F_{\text{sep}}/M)$. Then since M/F is Galois and $L \cap M = F$, N is normal in G and $G = HN$. Also, $\text{Gal}(M'/F) \cong G/N \cong \langle \sigma \rangle$ and $\text{Gal}(M'/L) \cong H/(H \cap N) \cong \langle \sigma \rangle$. Since $L \otimes_F M$ is the field M', by [D, p. 56, Ex. 1] $\text{cor}_{L/F}(D) \otimes_F M \sim \text{cor}_{M'/M}(D \otimes_L M') \sim \text{cor}_{M'/M}(M') \sim M$ in $\text{Br}(M)$.

Since $D = (M'/L, \sigma, \alpha)' \in \text{Br}(M'/L) \cong H^2(H/(H \cap N), M^*)$, D is represented by $\text{inf}^H_{H/(H \cap N)}(f)$ where $f \in H^2(H/(H \cap N), M^*)$ is given by $(\sigma^i, \sigma^j) \mapsto 1$ if $0 \leq i + j \leq n - 1$ and $(\sigma^i, \sigma^j) \mapsto \alpha$ if $i + j \geq n$. Since the algebraic corestriction corresponds to the homological corestriction, in $\text{Br}(F)$, $\text{cor}_{L/F}(D)$ is represented by $\text{cor}_{H}^{G}(\text{inf}^H_{H/(H \cap N)}(f))$. But, by [H, Th. 5] $\text{cor}_{H}^{G}(\text{inf}^H_{H/(H \cap N)}(f)) = \text{inf}^{G}_{G/N}(N_{G/N}^*(f))$, where $N_{G/N}^*: H^2(H/(H \cap N), M^*) \rightarrow H^2(G/N, M^*)$ is induced by the norm map from M^* to M. Hence, $\text{cor}_{L/F}(D) \sim (M/F, \sigma, N_{L/F}(\alpha))'$ in $\text{Br}(F)$. □

We can now prove our theorem.

Theorem 2. Let L/F be a finite separable extension of Henselian valued fields with same residue fields $\overline{L} = \overline{F}$. If D is inertially split over L, then the index $\text{ind}(D)$ of D divides $|Z(D) : Z(\overline{D})| \cdot \text{ind}(D) = |\Gamma_D : \Gamma_{\overline{D}}| \cdot \text{ind}(D)$, where $Z(\overline{D})$ is the center of the residue division ring \overline{D}, and Γ_D is the value group of D.

Proof. Since D is inertially split over L, by [JW, Lemma 5.14] there exist $I', N' \in \mathcal{D}(L)$ with I' inertial over L and N' NSR over L, such that $D \sim I' \otimes_L N'$ in $Br(L)$. Then by [JW, Th. 4.4], $N' = \bigotimes_{i=1}^{k} (M'_i / L, \sigma_i, \alpha_i)_{t_i}$ where M'_i / L is inertial cyclic Galois with $Gal(M'_i / L) = \langle \sigma_i \rangle$.

By Lemma 1 above, $\text{cor}_{L/F}(N') \sim \bigotimes_{i=1}^{k} (M_i / F, \sigma_i, N_{L/F}(\alpha_i))_{t_i}$ where M_i is the inertial lift of M'_i over F.

Let $a_i = N_{L/F}(\alpha_i)$ and let $v(a_i)$ map to an element of $\Gamma_F / t_i' \Gamma_F$ of order t_i. So, $t_i v(a_i) = t_i' v(p_i)$ for some $p_i \in F^*$, and $a_i = u_i p_i^{t_i}$ where $s_i = t_i' / t_i$ and u_i is a α-unit of F. Let K_i be an extension of F of degree t_i with $F \subseteq K_i \subseteq M_i$ and $\text{Gal}(K_i / F) = \langle \sigma_i \rangle$ where σ_i is the restriction of σ_i to K_i. Then by [R, Th. 30. 10, p. 262] $\text{cor}_{L/F}(N') \sim \bigotimes_{i=1}^{k} (M_i / F, \sigma_i, u_i)_{t_i} \otimes_F \bigotimes_{i=1}^{k} (K_i / F, \sigma_i, p_i)_{t_i}$. Also, by [H, Lemma 4] $cI' \in \mathcal{D}_t(F)$ and $\frac{cI'}{L} \sim \frac{cI'}{L} \otimes_L F$ in $Br(F)$.

Let I be the underlying division algebra of $cI' \otimes_F (\bigotimes_{i=1}^{k} (M_i / F, \sigma_i, u_i))_{t_i}$ and let $N = \bigotimes_{i=1}^{k} (K_i / F, \sigma_i, p_i)_{t_i}$. Then $cD \sim I \otimes_F N$ in $Br(F)$ with I inertial over F and N NSR over F. So, by [JW, Th. 5.15 (a)] $\text{ind}(D) = \text{ind}(\frac{cI'}{L}) \cdot |\Gamma' / \Gamma_L| = \text{ind}(\frac{cI'}{L}) \cdot \prod_{i=1}^{k} t_i$, and $\text{ind}(cD) = \text{ind}(\frac{cI'}{L}) \cdot |\Gamma' / \Gamma_F| = \text{ind}(\frac{cI'}{L}) \cdot \prod_{i=1}^{k} t_i$. But $\text{ind}(\frac{cI'}{L})$ divides $\text{ind}(\frac{cI'}{L} \otimes_L F) \cdot \prod_{i=1}^{k} \text{ind}((\frac{M_i}{F}, \sigma_i, u_i))_{t_i} \otimes_F N$.

Since $\frac{cI'}{L} \sim \frac{cI'}{L} \otimes_L F$, by [P, Prop. 13. 4] and [D, Th. 12, p. 67] $\text{ind}(\frac{cI'}{L}) | \text{ind}(\frac{cI'}{L})$ and $\text{ind}(\frac{cI'}{L}) | \text{ind}(\frac{cI'}{L}) \otimes_L F$.

Note that $\text{Gal}(M_i / N) \mathcal{N} / \mathcal{N} \cong \text{Gal}(M_i / N) \mathcal{N} / \mathcal{N} = \mathcal{N} / \mathcal{N}$. So, by [R, Th. 30. 8, p. 261] $(M_i / F, \sigma_i, \sigma_i)_{t_i} \otimes_F N \sim (M_i / N, \sigma_i, \sigma_i)_{t_i}$, whence $\text{ind}((\frac{M_i}{F}, \sigma_i, \sigma_i)_{t_i} \otimes_F N)$ divides s_i. Therefore, $\text{ind}(cD)$ divides $(\mathcal{N} / \mathcal{N}) \cdot \text{ind}(\frac{cI'}{L}) \cdot \prod_{i=1}^{k} s_i t_i = (\mathcal{N} / \mathcal{N}) \cdot \text{ind}(D)$. Since $Z(D) = \mathcal{N}$ and $Z(\frac{cD}{L}) = \mathcal{N}$ by [JW, Th. 5.15 (a)], $\text{ind}(cD)$ divides $\text{ind}(D)$.

Note that $\text{ind}(\frac{Z(\mathcal{D})}{\mathcal{D}}) = |\Gamma_D / \Gamma_D|$, since $\Gamma_D = \Gamma' / \mathcal{N}$ and $\Gamma_D = \Gamma' / \mathcal{N}$ by [JW, Th. 5.15 (a)] and $\mathcal{N} / \mathcal{N} = |\Gamma' / \mathcal{N} / \mathcal{N}|$ as N' is NSR over L and N is NSR over F. □
This theorem gives us a best relation between \(\text{ind}(D) \) and \(\text{ind}^{(c)}(D) \) when \(D \) is inertially split over \(L \) and \(L/F \) is a finite separable extension of Henselian valued fields with same residue fields \(\overline{F} = \overline{F} \), as the following examples illustrate.

Example 3. Let \(L/F \) be as above and let \(D \) be inertial over \(L \). Then by [H, Lemma 4] \(^{c}D \) is inertial over \(F \) and \(\overline{D} \sim D \otimes [L:F] \) in \(\text{Br}(\overline{F}) \). So \(Z(\overline{D}) = \overline{L} = \overline{F} = Z(\overline{cD}) \), and \(\text{ind}^{(c)}(D) = \text{ind}(\overline{cD}) = \text{ind}(D) \otimes [L:F] \) by [JW, Th. 2.8 (b)]. So, by [P, Prop. 13.4] \(\text{ind}^{(c)}(D) \mid \text{ind}(D) \).

Example 4. Let \((F, v) \) be a Henselian field with \(\Gamma_F = \mathbb{Z} \) and \(\pi \in F \) with \(v(\pi) = 1 \). Let \(L = F(\sqrt[n]{\pi}) \). (So \(\overline{L} = \overline{F} \) and \(\Gamma_F = \frac{1}{n} \mathbb{Z} \)). Let \(t \geq 1 \) with \(\gcd(n,t) = 1 \) and \(D = (M'/L, \sigma, \pi_t) \), be a NSR division algebra over \(L \), where \(M'/L \) is inertial with \(\text{Gal}(M/L) = \langle \sigma \rangle \) and \([M':L] = t \). Then by Lemma 1, \(^{c}D \sim \text{cor}_{L/F}(D) \sim (M/F, \sigma, \pi^n)_t \) in \(\text{Br}(F) \), where \(M \) is the inertial lift of \(M' \) over \(F \). But since \((M/F, \sigma, \pi^n) \), is a NSR division algebra over \(F \) as shown in [JW, Ex. 4.3], \(\text{ind}^{(c)}(D) = t = \text{ind}(D) = [Z(\overline{D} : \overline{Z(\overline{D})})] \cdot \text{ind}(D) \).

References

Department of Mathematics
Korea University
Anam-Dong, Sungbuk-ku
Seoul 136-701, Korea
E-mail: yhwang@semi.korea.ac.kr