MAPPING PROPERTIES OF THE MARCINKIEWICZ INTEGRALS ON HOMOGENEOUS GROUPS

YOUNGWOOW CHOI AND KYUNG SOO RIM

Abstract. Under the cancellation property and the Lipschitz condition on kernels, we prove that the Marcinkiewicz integrals defined on a homogeneous group H are bounded from $H^1(H)$ to $L^1(H)$, from $L^\infty_c(H)$ to $BMO(H)$, and from $L^p(H)$ to $L^p(H)$ for $1 < p < \infty$ assuming the L^q-boundedness for some $q > 1$.

1. Introduction

Stein [8] defined a higher dimensional analogue of the Marcinkiewicz integral by

$$
\mu_{\Omega} f(x) = \left(\int_0^\infty |F_t(x)|^2 \frac{dt}{t^3} \right)^{\frac{1}{2}},
$$

where

$$
F_t(x) = \int_{|y-x|<t} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) \, dy,
$$

Ω is a homogeneous function of degree zero whose restriction to S^{n-1} belongs to $\Lambda^\alpha (S^{n-1})$ and satisfies the cancellation property,

$$
\int_{S^{n-1}} \Omega(x') \, d\sigma(x') = 0.
$$

Here, S^{n-1} denotes the unit sphere in \mathbb{R}^n and $\Lambda^\alpha (S^{n-1})$ denotes the Lipschitz space of order α on S^{n-1}. The continuity of Marcinkiewicz

2000 Mathematics Subject Classification: Primary 42B20; Secondary 47B38.
Key words and phrases: Marcinkiewicz integrals, homogeneous groups.
The first author was supported by grant No. 1999-2-112-004-3 from the Interdisciplinary Research program of the KOSEF.
integrals is very useful in harmonic analysis \[9, 10, 15\]. Stein \[8\] proved that if \(\Omega\) is in \(\Lambda^\alpha\left(S^{n-1}\right)\) with \(0 < \alpha \leq 1\), then
\[
\left| \{x \in \mathbb{R}^n : \mu_\Omega f(x) > \lambda \} \right| \leq \frac{C}{\lambda} \|f\|_{L^1}
\]
and
\[
\|\mu_\Omega f\|_{L^p} \leq C_p \|f\|_{L^p},
\]
where \(1 < p \leq 2\), and if \(\Omega\) is an integrable odd function, then
\[
\|\mu_\Omega f\|_{L^p} \leq C_p \|f\|_{L^p}
\]
for \(2 < p < \infty\).

The problem most immediately suggested by Marcinkiewicz \[7\], who conjectured the \(L^p\)-boundedness of (1.1) for \(n = 1\) and for \(\Omega(t) = \text{sign } t\) until Zygmund \[14\] proved that the conjecture holds for \(1 < p < \infty\), has been extensively studied beginning with the 1958's article of Stein \[8\]. Benedek, Calderon and Panzone \[1\] proved that if \(\Omega \in C^1(\mathbb{R}^n \setminus \{0\})\) is a homogeneous function of degree zero satisfying the cancellation property, then \(\mu_\Omega\) is bounded on \(L^p(\mathbb{H})\) for \(1 < p < \infty\). Torchinsky and Wang considered the weighted \(L^p\)-boundedness of \(\mu_\Omega\), and showed that if \(\Omega\) is in \(\Lambda^\alpha\left(S^{Q-1}\right)\) and \(\mu_\Omega\) is bounded on \(L^p(\mathbb{R}^n)\) for \(1 < p < \infty\), then for \(\omega\) satisfying an \(A_p\) condition, \(\mu_\Omega\) is bounded on \(L^p(\omega)\) \[13\]. Further results on (1.1) were obtained when \(\Omega\) satisfies some smoothness conditions \[1\], \[8\] and \[13\].

In this paper, we prove the \(H^1-L^1, L^\infty-BMO\) and \(L^p-L^p\) (\(1 < p < \infty\)) boundedness of Marcinkiewicz integrals defined on homogeneous groups under the cancellation property and the Lipschitz condition on \(\Omega\) and under the \(L^q\)-boundedness of \(\mu_\Omega\).

This paper is organized as follows: in the next section, some preliminary materials are introduced. The main theorem is stated in Section 3. End-point results appear in Sections 4 and 5. Combined with an interpolation argument, the \(L^p\) boundedness for \(1 < p < \infty\) will be shown in Section 6.

2. Preliminaries and notations

In this section, we introduce notations related to homogeneous groups along with some preliminary materials. Mainly, we follow \[6\].
2.1. Homogeneous groups

A nilpotent Lie group \mathbb{H} with a dilation group $\{\delta_r\}_{r>0}$ is said to be a homogeneous group. The dilation group is given by

$$\delta_r = \exp (A \ln r)$$

with a suitable matrix A having positive eigenvalues.

\mathbb{H} has a natural homogeneous norm $| \cdot |$, and the homogeneous dimension Q. Abusing the notation, the bi-invariant measure on \mathbb{H} will be denoted by $| \cdot |$.

Remark 2.1. Let \mathbb{H}, $\{\delta_r\}$, $| \cdot |$ and Q be as above. The eigenvalues of the matrix defining $\{\delta_r\}$ are listed as $1 = d_1 \leq d_2 \leq \cdots \leq d_n$ and we let $\bar{d} = \max \{d_i : i = 1, \cdots, n\}$.

1. $|\delta_r x| = r|x|$ for each $x \in \mathbb{H}$, $r > 0$.
2. There exist $C_1, C_2 > 0$ such that

$$C_1 \|x\| \leq |x| \leq C_2 \|x\|^{\bar{d}}$$

whenever $|x| \leq 1$.

Here, $\|\cdot\|$ denotes the euclidean norm.

3. There exists a constant $\gamma > 0$ such that for all $x, y \in \mathbb{H}$,

$$|x \circ y| \leq \gamma(|x| + |y|) \text{ for all } x \in \mathbb{H}$$

(2.1)

$$|x \circ y| - |x| \leq \gamma|y| \text{ for all } x, y \in \mathbb{H} \text{ such that } |y| \leq |x|/2.$$

(2.2)

4. $|\delta_r E| = r^Q|E|$.

5. We let

$$S = \{x \in \mathbb{H} : |x| = 1\}.$$

There is a unique Radon measure σ on S such that for all $f \in L^1(\mathbb{H})$,

$$\int_{\mathbb{H}} f(x) \, dx = \int_{0}^{\infty} \int_{S} f(\delta_r y) r^{Q-1} \, d\sigma(y) \, dr.$$

2.2. The Hardy space $H^1(\mathbb{H})$

For the definition of the Hardy space $H^1(\mathbb{H})$, we refer the interested readers to [6].
2.2.1. $H_{q,0}^1$-atoms. Let $q \in (1, \infty]$. A function $a(x)$ on \mathbb{H} is said to be an $H_{q,0}^1$-atom (associated to a ball B) if it satisfies the following conditions:

(a) $a(x)$ is supported in \bar{B};
(b) $|a(x)| \leq |B|^\frac{1}{q} - 1$ almost everywhere; and
(c) $\int_{\mathbb{H}} a(x) \, dx = 0$.

Remark 2.2. Let $a(x)$ be an $H_{\infty,0}^1$-atom. Then we have

(2.3) \[\|a\|_{L^1(\mathbb{H})} \leq 1. \]

2.3. Atomic decomposition

An equivalent way of looking at $H^1(\mathbb{H})$ is the decomposition of elements in $H^1(\mathbb{H})$ into $H_{q,0}^1$-atoms.

Theorem 2.1 (Decomposition Theorem). Let $q \in (1, \infty]$. For $f \in H^1(\mathbb{H})$ there exist a collection of $H_{q,0}^1$ atoms $\{a_k\}_{k \in \mathbb{N}}$ and a sequence of nonnegative real numbers $\{\lambda_k\}_{k \in \mathbb{N}}$ with $\sum_{k=1}^{\infty} \lambda_k < \infty$ so that

\[f = \sum_{k=1}^{\infty} \lambda_k a_k \]

in the sense of distributions, and we have

\[\|f\|_{H^1} \approx \sum_{k=1}^{\infty} \lambda_k. \]

2.4. BMO

Definition 2.3. A locally integrable function $f : \mathbb{H} \to \mathbb{C}$ is said to be in BMO if there exists a constant C such that for each ball B

\[\frac{1}{|B|} \int_{B} |f(x) - f_B| \, dx \leq C, \]

holds, where

\[f_B = \frac{1}{|B|} \int_{B} f(x) \, dx. \]
3. Marcinkiewicz integrals

Let Ω be a measurable function on a homogeneous group \mathbb{H}, which is homogeneous of degree 0 in the sense that

$$\Omega(\delta_r x) = \Omega(x)$$

holds for a.e. $x \in \mathbb{H} \setminus \{0\}$ and $r > 0$. We define the Marcinkiewicz integral μf as follows:

$$(3.1) \quad \mu f(x) = \left(\int_0^\infty |F_t(x)|^2 \frac{dt}{t^3} \right)^{\frac{1}{2}},$$

where

$$F_t(x) = \int_{B_t(x)} \frac{\Omega(x \circ y^{-1})}{|x \circ y^{-1}| Q_{-1} f(y)} dy.$$

We will study the mapping properties of μf. To be more specific, we will prove:

Theorem 3.1. Let \mathbb{H}, Ω and μf be as above. We assume the following:

- $\Omega|_S \in \Lambda^\alpha (S)$;
- $\int_S \Omega(x') \; d\sigma(x') = 0$; and
- μf is bounded in $L^q (\mathbb{H})$ for some $q > 1$.

Then the following inequalities hold:

$$\| \mu f \|_{L^1} \leq C_1 \| f \|_{H^1}, \quad f \in H^1 (\mathbb{H})$$

$$\| \mu f \|_{BMO} \leq C_\infty \| f \|_{L^\infty}, \quad f \in L^\infty_\infty (\mathbb{H})$$

and

$$\| \mu f \|_{L^p} \leq C_p \| f \|_{L^p}, \quad f \in L^p (\mathbb{H})$$

for $1 < p < \infty$.

4. H^1-L^1 boundedness

In this section, we establish H^1-L^1 boundedness of the Marcinkiewicz integral. In view of Theorem 2.1 and the sublinearity of μf, it suffices to verify the inequality (3.2) when f is an arbitrary $H^1_{\infty,0}$-atom. Let $a(x)$
be an $H^1_{\infty,0}$-atom supported in $B_r(x_0)$. We split the integral into two parts,
\[
\int_{\mathbb{H}} \mu_{\Omega} a(x) \, dx = \int_{B_{2\lambda r}(x_0)} \mu_{\Omega} a(x) \, dx + \int_{\mathbb{H}\setminus B_{2\lambda r}(x_0)} \mu_{\Omega} a(x) \, dx \equiv I + II.
\]

4.1. Estimation on I

By hypothesis, we have
\[
(4.1) \int_{B_{2\lambda r}(x_0)} |\mu_{\Omega} a(x)|^q \, dx \lesssim \int_{B_r(x_0)} |a(x)|^q \, dx \lesssim |B_r(x_0)|^{-q+1}.
\]
By Hölder’s inequality and (4.1), we obtain
\[
I \leq \left(\int_{B_{2\lambda r}(x_0)} |\mu_{\Omega} a(x)|^q \, dx \right)^{\frac{1}{q}} \left(|B_{2\lambda r}(x_0)|^{\frac{1}{p'}} \right)^{\frac{1}{p'}} \lesssim 1.
\]

4.2. Estimation on II

Before we proceed, we introduce some simple facts on balls in \mathbb{H}.

Definition 4.1. For $E \subset \mathbb{H}$ and $x \notin E$, we will use the following notation.
\[
d(x,E) = \inf \{|x \circ y^{-1}| : y \in E\}.
\]

Lemma 4.2. Let $x \notin B_{2\lambda r}(x_0)$. Then we have
\[
d(x, B_r(x_0)) \geq r.
\]
Proof. Suppose
\[
d(x, B_r(x_0)) < r.
\]
Then there exists $y \in B_r(x_0)$ such that $|y \circ x^{-1}| < r$. So we get
\[
|x \circ x_0^{-1}| \leq \lambda \left(|x \circ y^{-1}| + |y \circ x_0^{-1}| \right) < 2\lambda r.
\]
A contradiction to $x \notin B_{2\lambda r}(x_0)$.

Lemma 4.3. Let $x \notin B_{2\lambda r}(x_0)$ and $y \in B_r(x_0)$. Then we have
\[
|x \circ y^{-1}| \leq 2\lambda |x \circ x_0^{-1}| \leq 4\lambda^2 |x \circ y^{-1}|.
\]
Proof. Observe that
\[
|x \circ y^{-1}| \leq \lambda (|x \circ x_0^{-1}| + |x_0 \circ y^{-1}|)
\]
\[
\leq 2\lambda |x \circ x_0^{-1}|
\]
\[
\leq 2\lambda^2 (|x \circ y^{-1}| + |y \circ x_0^{-1}|)
\]
\[
\leq 4\lambda^2 |x \circ y^{-1}|
\]
from
\[
|x \circ y^{-1}| \geq d(x, B_r(x_0)) \geq \rho \geq |y \circ x_0^{-1}|
\]

Lemma 4.4. Let \(x \notin B_{2\lambda r}(x_0)\) and \(t < d(x, B_r(x_0))\). Then we have
\[B_r(x_0) \cap B_t(x) = \emptyset.\]

Proof. If \(y \in B_r(x_0)\), then we have
\[
|y \circ x^{-1}| \geq d(x, B_r(x_0)) \geq t.
\]

Also, observe the following fact.

Fact 4.5. There exist constants \(C > 0\), \(\varepsilon \in (0,1)\) and \(\rho > 0\) such that
\[
|\delta_s x \circ x^{-1}| \leq C|1-s|^{\rho}|x|
\]
uniformly in \(x \in \mathbb{H}\) and \(|1-s| < \varepsilon\).

Fix \(x \in \mathbb{H} \setminus B_{2\lambda r}(x_0)\). Then, by Lemma 4.2 we have
\[
d(x, B_r(x_0)) \leq |x \circ x_0^{-1}| \leq 2\lambda d(x, B_r(x_0)).
\]

We have
\[
\mu(a(x))^2 = \int_{d(x, B_r(x_0))}^{\infty} \left(\int_{B_r(x_0) \cap B_t(x)} \frac{\Omega(x \circ y^{-1})}{|x \circ y^{-1}|^{Q-1}} a(y) \, dy \right)^2 \frac{dt}{t^3}
\]
\[
= \int_{d(x, B_r(x_0))}^{\infty} \left(\int_{B_r(x_0) \cap B_t(x)} \frac{\Omega(x \circ y^{-1})}{t |x \circ y^{-1}|^{Q-1}} a(y) \, dy \right) \cdot J_t a(x) \, \frac{dt}{t^2},
\]
where
\[
J_t a(x) = \left(\int_{B_r(x_0) \cap B_t(x)} \frac{\Omega(x \circ y^{-1})}{|x \circ y^{-1}|^{Q-1}} a(y) \, dy \right).
\]
Lemma 4.6. Let Ω, a, and $B_r(x_0)$ be as above. Then we have
\[
\left| \int_{B_r(x_0) \cap B_t(x)} \frac{\Omega (x \circ y^{-1})}{t \| x \circ y^{-1} \|^{Q-1}} a(y) \, dy \right| \lesssim Ma(x),
\]
whenever $t > d(x, B_r(x_0))$, $x \in \mathbb{H} \setminus B_{2\lambda r}(x_0)$.

Proof. There are two cases.
Case 1. $t \leq 2d(x, B_r(x_0))$. From
\[
\left| \int_{B_r(x_0) \cap B_t(x)} \frac{\Omega (x \circ y^{-1})}{t \| x \circ y^{-1} \|^{Q-1}} a(y) \, dy \right| \lesssim \frac{\| \Omega \|_{\infty}}{t} \int_{B_t(x)} |a(y)| \, dy
\]
we have
\[
\lesssim \frac{\| \Omega \|_{\infty}}{t^Q} \int_{B_t(x)} |a(y)| \, dy \lesssim Ma(x),
\]
which completes the proof.

Case 2. $t \geq 2(d(x, B_r(x_0)))$. From $B_r(x_0) \cap B_t(x) \subset B_{d(x, B_r(x_0))}(x)$, we have
\[
\left| \int_{B_r(x_0) \cap B_t(x)} \frac{\Omega (x \circ y^{-1})}{t \| x \circ y^{-1} \|^{Q-1}} a(y) \, dy \right| \lesssim \frac{\| \Omega \|_{\infty}}{d(x, B_r(x_0))^Q} \int_{B_{d(x, B_r(x_0))}(x_0)} |a(y)| \, dy
\]
\[
\lesssim \frac{\| \Omega \|_{\infty}}{d(x, B_r(x_0))^Q} \int_{B_{d(x, B_r(x_0))}(x_0)} |a(y)| \, dy \lesssim Ma(x),
\]
which completes the proof.

For $J_t a(x)$ we have the following:

Lemma 4.7. With Ω, a, and $B_r(x_0)$ as above,
\[
J_t a(x) \lesssim \begin{cases}
\quad tMa(x) & \text{if } d(x, B_r(x_0)) \leq t \leq \lambda (d(x, B_r(x_0)) + 2\lambda r) \\
\quad t^\nu |x \circ x_0^{-1}|^{-Q+1-\nu} & \text{if } t \geq \lambda (d(x, B_r(x_0)) + 2\lambda r)
\end{cases}
\]
for any $x \in \mathbb{H} \setminus B_{2\lambda r}(x_0)$, where $\nu = \min \{\alpha, \rho \alpha, 1\}$.
Marcinkiewicz integrals: homogeneous groups

Proof. We have two cases.

Case 1. \(t \geq \lambda (d(x, B_r(x_0)) + 2\lambda r) \).

From \(B_r(x_0) \subset B_t(x) \), \(\int_{B_t(x_0)} a(y) \, dy = 0 \) and the Lipschitz condition on \(\Omega \), we get

\[
J_t a(x) = \left| \int_{B_t(x_0) \cap B_t(x)} \frac{\Omega(x \circ y^{-1})}{|x \circ y^{-1}|^{Q-1}} a(y) \, dy \right|
\]

Notice the following:

\[
\left| \frac{\Omega(x \circ y^{-1})}{|x \circ y^{-1}|^{Q-1}} - \frac{\Omega(x \circ x_0^{-1})}{|x \circ x_0^{-1}|^{Q-1}} \right|
\]

\[
+ \left| \frac{\Omega(x \circ y^{-1})}{|x \circ y^{-1}|^{Q-1}} - \frac{1}{|x \circ y^{-1}|^{Q-1}} \right| \cdot \left| \frac{1}{|x \circ y^{-1}|^{Q-1}} - \frac{1}{|x \circ x_0^{-1}|^{Q-1}} \right|
\]

\[
\lesssim \left| \frac{\delta_{[|x \circ y^{-1}|^{-1}]} (x \circ y^{-1}) \circ \delta_{[|x \circ x_0^{-1}|^{-1}]} (x \circ x_0^{-1})^{-1}}{|x \circ x_0^{-1}|^{Q-1}} \right|^{\alpha} + \frac{|y \circ x_0^{-1}|}{|x \circ x_0^{-1}|^{Q}}.
\]

From (2.1), we obtain

\[
\lesssim \left| \frac{\delta_{[|x \circ y^{-1}|^{-1}]} (x \circ y^{-1}) \circ \delta_{[|x \circ x_0^{-1}|^{-1}]} (x \circ x_0^{-1})^{-1}}{|x \circ x_0^{-1}|^{Q-1}} \right|^{\alpha} + \frac{|y \circ x_0^{-1}|}{|x \circ x_0^{-1}|^{Q}}
\]

\[
\lesssim \left| \frac{r}{|x \circ y^{-1}|} + \left(1 - \frac{|x \circ x_0^{-1}|}{|x \circ y^{-1}|} \right)^{\rho} \frac{|x \circ x_0^{-1}|}{|x \circ x_0^{-1}|^{Q}} \right| + \frac{r^\rho}{|x \circ x_0^{-1}|^{\rho}}.
\]
and so,

\[
\left| \frac{\Omega(x \circ y^{-1})}{|x \circ y^{-1}|^{Q-1}} - \frac{\Omega(x \circ x_0^{-1})}{|x \circ x_0^{-1}|^{Q-1}} \right| \lesssim \frac{r^\alpha}{|x \circ x_0^{-1}|^{Q+\alpha-1}} + \frac{r^{\rho \alpha}}{|x \circ x_0^{-1}|^{Q+\rho \alpha-1}} + \frac{r}{|x \circ x_0^{-1}|^Q}
\]

since \(|x \circ x_0^{-1}| \geq 2\lambda r \). Therefore we obtain

\[
J_t a(x) \lesssim \frac{r^{\nu}}{|x \circ x_0^{-1}|^{Q-1+\nu}}.
\]

Case 2. \(t \leq \lambda(d(x, B_r(x_0)) + 2\lambda r) \).

Since \(t \sim d(x, B_r(x_0)) \), we get

\[
J_t a(x) \leq \left\| \Omega \right\| \int_{B_t(x)} \frac{1}{|x \circ y^{-1}|^{Q-1}} |a(y)| \, dy \\
\lesssim \frac{1}{t^{Q-1}} \int_{B_t(x)} |a(y)| \, dy \\
\lesssim t M a(x).
\]

The proof of Lemma 4.7 is completed. \(\square \)

Thus, for \(x \in \mathbb{H} \setminus B_{2\lambda r}(x_0) \),

\[
\mu_{\Omega} a(x)^2 \lesssim \left(\int_{d(x, B_r(x_0))}^{\infty} J_t a(x) \, dt \right)^2 : Ma(x)
\]

\[
= \left(\int_{d(x, B_r(x_0))}^{\lambda(d(x, B_r(x_0)) + 2\lambda r)} J_t a(x) \, dt \right)^2 \\
+ \int_{\lambda(d(x, B_r(x_0)) + 2\lambda r)}^{\infty} J_t a(x) \, dt \right)^2 : Ma(x)
\]
and so we obtain
\[
\mu_{\Omega a}(x) \lesssim \frac{r^{1/2} \cdot |Ma(x)|}{|x \circ x_0|^{3/4}} + \frac{r^{\nu/2} \cdot |Ma(x)|^{3/4}}{|x \circ x_0|^{Q+\nu/2}}.
\]

Pick \(p_1, p_2, q_1, \) and \(q_2 \) with the following properties:
\begin{itemize}
 \item \(2Q < p_1 < \infty; \)
 \item \(\frac{2Q}{p_1} < p_2 < 2; \)
 \item \(\frac{1}{p_1} + \frac{1}{q_1} = 1; \) and
 \item \(\frac{1}{p_2} + \frac{1}{q_2} = 1. \)
\end{itemize}

From Hölder’s inequality, the Maximal theorem, and (2.3), we obtain
\[
r^{1/2} \int_{\mathbb{H} \setminus B_{2\lambda r}(x_0)} \frac{|Ma(x)|}{|x \circ x_0|^{1/2}} \, dx
\]
\[
\lesssim r^{1/2} \left(\int_{\mathbb{H} \setminus B_{2\lambda r}(x_0)} \frac{|x \circ x_0|^{-1/4}}{d\rho} \, dx \right)^{1/2} \|Ma\|_{q_1}
\]
\[
\lesssim r^{1/2} \left(\int_{2r}^{\infty} \rho^{-\frac{p_1}{2}+Q-1} \, d\rho \right)^{1/2} \|a\|_{q_1}
\]
\[
\lesssim 1
\]
and
\[
r^{\nu/2} \int_{\mathbb{H} \setminus B_{2\lambda r}(x_0)} \frac{|Ma(x)|^{3/4}}{|x \circ x_0|^{Q+\nu/2}} \, dx
\]
\[
\lesssim r^{\nu/2} \left(\int_{\mathbb{H} \setminus B_{2\lambda r}(x_0)} \frac{|x-x_0|^{-(Q+\nu)p_2/2}}{d\rho} \, dx \right)^{1/2} \|Ma\|_{q_2}
\]
\[
\lesssim r^{\nu/2} \left(\int_{2r}^{\infty} \rho^{-\frac{(Q+\nu)p_2}{2}+Q-1} \, d\rho \right)^{1/2} \|a\|_{q_2}
\]
\[
\lesssim 1.
\]
This shows

$$II \lesssim 1.$$

Altogether, we obtain

$$\int_H \mu_\Omega a(x) \, dx \lesssim 1$$

and the proof is complete. \hfill \Box

5. \textit{L}^\infty-\textit{BMO boundedness}

In this section, we study the \textit{L}^\infty-\textit{BMO} boundedness of the Marcinkiewicz integrals. Let $f \in L^\infty(\mathbb{H})$ be compactly supported and let $B_r(x_0)$ be any ball. We write

$$f = f \chi_{B_{2\lambda r}(x_0)} + f \chi_{\mathbb{H} \setminus B_{2\lambda r}(x_0)} \equiv f_1 + f_2.$$

Then $f_1 \in L^2(\mathbb{H})$. By Hölder’s inequality and by hypothesis,

$$\int_{B_r(x_0)} \mu_\Omega f_1(x) \, dx \leq |B_r(x_0)|^{1/3} \left(\int_{B_r(x_0)} [\mu_\Omega f_1(x)]^q \, dx \right)^{1/q} \lesssim |B_r(x_0)|^{1/3} \|f_1\|_{L^q(\mathbb{H})} \lesssim |B_r(x_0)|^{1/3} |B_{2\lambda r}(x_0)|^{1/3} \|f_1\|_{L^\infty} \lesssim |B_r(x_0)| \|f\|_{L^\infty}.$$

Thus we obtain

$$1 \left| B_r(x_0) \right| \int_{B_r(x_0)} \mu_\Omega f_1(x) \, dx \lesssim \|f\|_{L^\infty}.$$

For $x \in B_r(x_0)$ we have $|x \circ y^{-1}| > r$ whenever $y \in \mathbb{H} \setminus B_{2\lambda r}(x_0)$. Let $x \in B_r(x_0)$ and let

$$III = \left(\int_0^\infty |F_t(x) - F_t(x_0)|^2 \frac{dt}{t^3} \right)^{1/2}.$$
Then we have

\[III = \left(\int_0^\infty \left| \int_{B_t(x)} \frac{\Omega(x \circ y^{-1})}{|x \circ y^{-1}|^{Q-1}} - \frac{\Omega(x_0 \circ y^{-1})}{|x_0 \circ y^{-1}|^{Q-1}} \right| f_2(y) \, dy \right)^2 \frac{dt}{t^3} \]

\[= \left(\int_r^\infty \left| \int_{B_{t}(x)} \frac{\Omega(x \circ y^{-1})}{|x \circ y^{-1}|^{Q-1}} - \frac{\Omega(x_0 \circ y^{-1})}{|x_0 \circ y^{-1}|^{Q-1}} \right| f_2(y) \, dy \right)^2 \frac{dt}{t^3} \]

\[\lesssim \left(\int_r^\infty \left(\int_{B_{2t\lambda}(x_0)\setminus B_{2\lambda r}(x_0)} \frac{r^\nu}{|y-x_0|^{Q-1+\nu}} \, dy \right)^2 \frac{dt}{t^3} \right)^{\frac{1}{2}} \|f_2\|_{L^\infty} \]

\[\lesssim \left(\int_r^\infty \left(\int_{2\lambda r}^{2\lambda t} \frac{r^\nu}{s^{Q-1+\nu}} \, ds \right)^{\frac{2}{3}} \frac{dt}{t} \right)^{\frac{1}{2}} \|f_2\|_{L^\infty} \]

A triangle inequality provides us

\[|\mu_\Omega f(x) - \mu_\Omega f_2(x_0)| \leq \mu_\Omega f_1(x) + III, \]

which verifies

\[\frac{1}{|B_r(x_0)|} \int_{B_r(x_0)} |\mu_\Omega f(x) - \mu_\Omega f_2(x_0)| \, dx \lesssim \|f\|_{L^\infty}. \]

This proves the L^∞_c-BMO boundedness.

6. L^p-boundedness

From H^1-L^1 boundedness and the L^q-boundedness, it is clear that μ_Ω is bounded in L^p for $1 < p \leq q$. To prove the L^p-boundedness for $q < p < \infty$, we define Stein’s linearizing function $\varphi(x,t)$ which is a function defined for $x \in \mathbb{H}$, $0 < t < \infty$, so that it satisfies the conditions:

(a) φ vanishes if t is small enough, or if t is large enough and is bounded.

(b) For all x,

\[\int_0^\infty |\varphi(x,t)|^2 \frac{dt}{t^3} \leq 1 \]

holds.
Now we define
\[T\phi f(x) = \int_0^\infty \int_{B_t(x)} \frac{\Omega(x \circ y^{-1})}{|x \circ y^{-1}|^{Q-1}} f(y) \, dy \varphi(x,t) \, \frac{dt}{t^3}. \]

By (a), (b) and by Hölder’s inequality,
\[|T\phi f(x)| \leq \mu_\Omega f(x) \quad \text{and} \quad \mu_\Omega f(x) = \sup_{\varphi} |T\varphi f(x)| \]
for all \(\varphi \) satisfying (a) and (b) of the above.

It can be shown that \(T\varphi \) is bounded from \(L^\infty_c(\mathbb{H}) \) to \(BMO(\mathbb{H}) \) with uniform bounds for those \(\varphi \) with the above properties. An interpolation yields the \(L^p \) boundedness for \(p \in (q, \infty) \) of \(T\varphi \) uniformly in \(\varphi \) with above properties, which implies the \(L^p \) boundedness of \(\mu_\Omega \).

References
Youngwoo Choi
Department of Mathematics
Ajou University
Suwon 442-749, Korea
E-mail: youngwoo@madang.ajou.ac.kr

Kyung Soo Rim
School of Mathematics
Korea Institute for Advanced Study
Seoul 130-012, Korea
E-mail: ksrin@math.kias.re.kr