A COMPLETENESS ON GENERALIZED FIBONACCI SEQUENCES

GWANG-YEON LEE

ABSTRACT.

1. Introduction

Let \(V = (v_1, v_2, \cdots) \) be a sequence of positive integers arranged in non-decreasing order. We define \(V \) to be complete if every positive integer \(n \) is the sum of some subsequence of \(V \), that is,

\[
(1.1) \quad n = \sum_{i=1}^{\infty} a_i v_i \quad \text{where} \quad a_i = 0 \text{ or } 1.
\]

For example, let the Fibonacci sequence be denoted by \(F \):

\[
F = (F_1, F_2, F_3, \cdots) = (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots),
\]

where \(F_0 = 0 \), \(F_1 = F_2 = 1 \), and, for \(n > 2 \), \(F_n = F_{n-1} + F_{n-2} \).

John L. Brown, Jr. gave a criterion for completeness in 1961:

BROWN’S CRITERION. A sequence \(V \) is complete if and only if

(i) \(v_1 = 1 \) and

(ii) for all \(n = 1, 2, \cdots \)

\[
s_{n-1} = v_1 + v_2 + \cdots + v_{n-1} \geq v_n - 1.
\]

Received February 14, 1994.

1991 AMS Subject Classification: 11B39, 15A15.

Key words: Fibonacci sequence, completeness, permanent
COROLLARY A. If $v_1 = 1$ and $v_{n+1} \leq 2v_n$, then V is complete.

From the above corollary, we can easily show that, the well known fact, the Fibonacci sequence is complete.

A sequence V, although unable to produce some numbers at the beginning, might be able to generate all numbers beyond some point N. Such sequence, we shall say that they are weakly complete in contrast to the strongly complete sequences which are capable of generating all positive integers.

Now, we define the k-generalized Fibonacci sequence $\{g_n^{(k)}\}$ as follows:

\[
g_1^{(k)} = g_2^{(k)} = \cdots = g_{k-2}^{(k)} = 0, \quad g_{k-1}^{(k)} = g_k^{(k)} = 1, \quad \text{and for } n > k \geq 2
\]
\[
g_n^{(k)} = g_{n-1}^{(k)} + g_{n-2}^{(k)} + \cdots + g_{n-k}^{(k)}.
\]

The above number $g_n^{(k)}$ is called the nth k-generalized Fibonacci number. Let $G^{(k)} = (1, 1, 2, 4, 8, 16, 32, \cdots)$ for k-generalized Fibonacci sequence $\{g_n^{(k)}\}$. For example, if $k = 7$, then $g_1^{(7)} = \cdots = g_5^{(7)} = 0$, $g_6^{(7)} = g_7^{(7)} = 1$, and then the sequence of 7-generalized Fibonacci numbers is

\[
G^{(7)} = (1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936, 15808, \cdots).
\]

The permanent of an n-square matrix $A = [a_{ij}]$ is defined by

\[
\text{per } A = \sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i\sigma(i)},
\]

where the summation extends over all permutations σ of the symmetric group S_n. A matrix is said to be a $(0,1)$-matrix if each of its entries is either 0 or 1.

Let $F^{(n,k)} = [f_{ij}]$ be the $n \times n$ $(0,1)$-$(k+1)$st super diagonal matrix defined
A completeness on generalized Fibonacci sequences

by

$$F^{(n,k)} = \begin{bmatrix}
1 & 1 & \cdots & \cdots & 1 & 0 & 0 & 0 & \cdots & 0 \\
1 & 1 & \cdots & \cdots & 1 & 1 & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & \cdots & 1 & 1 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & 0 & 1 & 0 & 0 & 0 & 0
\end{bmatrix},$$

(1.4)

where \(f_{11} = \cdots = f_{1k} = 1\) and \(f_{1k+1} = \cdots = f_{1n} = 0\).

In [3], the author determined the relationship between \(g^{(k)}_n\) and the permanent of the \(n \times n\) \((0,1)-(k+1)\)st super diagonal matrix \(F^{(n,k)}\) by using the matrix contraction.

Theorem 1.1. [3] Let \(g^{(k)}_{n+1}\) be the \((n+1)\)st \(k\)-generalized Fibonacci number, \(n \geq k\). Then

$$\text{per } F^{(n,k)} = g^{(k)}_{n+k-1}.$$

(1.5)

And, in [3], the next theorem is a matrix which is not a tridiagonal matrix whose permanent equals to the \((n+1)\)st Fibonacci number.

Theorem 1.2. [3] Let

$$U = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & \cdots & 1 \\
0 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 1
\end{bmatrix}_{n \times n},$$

(1.6)

Then

$$\text{per } P^T U P = F_{n+1},$$

(1.7)

for any permutation matrix \(P\).
2. Completeness on $G^{(k)}$

Now, we consider the completeness on $G^{(k)}$. Let

$$G^{(k)} = (1, 1, 2, 4, 8, \ldots) = (g_1^{(k)}, g_2^{(k)}, g_3^{(k)}, \ldots)$$

be the k-generalized Fibonacci sequence, $k \geq 2$. The following theorem shows the completeness on k-generalized Fibonacci sequences.

Theorem 2.1. The sequence $G^{(k)}$ is complete, $k \geq 2$.

Proof. Clearly $g_1^{(k)} = 1$. We proceed by induction on n, if $n = 2$, then $g_2^{(k)} = 1 \leq 2g_1^{(k)}$. Assume true for $n - 1$, $g_{n-1}^{(k)} \leq 2g_{n-2}^{(k)}$, and consider for n.

$$
\begin{align*}
(g_{n-1}^{(k)} + g_{n-2}^{(k)} + \cdots + g_{n-k}^{(k)}) + g_{n-k+1}^{(k)} & \\
\leq g_{n-1}^{(k)} + g_{n-2}^{(k)} + (g_{n-3}^{(k)} + \cdots + g_{n-k-1}^{(k)}) & \\
\iff g_{n}^{(k)} + g_{n-k+1}^{(k)} & \\
= g_{n-1}^{(k)} + g_{n-2}^{(k)} + g_{n-k+1}^{(k)} & \\
= 2g_{n-1}^{(k)} + g_{n-k+1}^{(k)}.
\end{align*}
$$

Since $g_{n-k+1}^{(k)} \geq g_{n-k-2}^{(k)}$, $g_n^{(k)} \leq 2g_{n-1}^{(k)}$. Therefore, by Corollary A, $G^{(k)}$ is complete.

In the Fibonacci sequence F, $F - F_r$ is complete. What can we say about the completeness on $G^{(k)} - g_r^{(k)}$? The following theorem is an answer for that.

Theorem 2.2. Let $k \geq 3$. $G^{(k)} - g_r^{(k)}$ is complete for $0 < r \leq 2$, and $G^{(k)} - g_r^{(k)}$ is not complete for $r \geq 3$.

Proof. Suppose that $0 < r \leq 2$. Since $g_1^{(k)} = g_2^{(k)}$, without loss of generality, let $r = 1$. Then $G^{(k)} - g_r^{(k)} = (g_2^{(k)}, g_3^{(k)}, \ldots)$ and the first term in $G^{(k)} - g_r^{(k)}$ is still 1. If $n \leq k$, then $g_2^{(k)} + g_3^{(k)} + \cdots + g_n^{(k)} = g_{n+1}^{(k)}$. So, $g_2^{(k)} + g_3^{(k)} + \cdots + g_n^{(k)} \geq g_{n+1}^{(k)} - 1$. Thus $G^{(k)} - g_r^{(k)}$ is complete. Now suppose that $n > k$. By induction on n,

$$g_2^{(k)} + g_3^{(k)} + \cdots + g_{k+1}^{(k)} = g_{k+2}^{(k)} \geq g_{k+2}^{(k)} - 1.$$
A completeness on generalized Fibonacci sequences

Assume true for \(n \), i.e., \(g_2^{(k)} + \cdots + g_n^{(k)} \geq g_{n+1}^{(k)} - 1 \). Then

\[
g_2^{(k)} + \cdots + g_n^{(k)} + g_{n+1}^{(k)} \geq 2g_{n+1}^{(k)} - 1
\]

\[
= g_{n+1}^{(k)} + (g_n^{(k)} + g_{n-1}^{(k)} + \cdots + g_{n-k+1}^{(k)}) - 1
\]

\[
= g_{n+2}^{(k)} + g_{n-k+1}^{(k)} - 1
\]

\[
\geq g_{n+2}^{(k)} - 1.
\]

Thus, if \(0 < r \leq 2 \), then \(G^{(k)} - g_r^{(k)}, k \geq 3 \), is complete.

We now suppose that \(r \geq 3 \). First, we prove that \(g_1^{(k)} + g_2^{(k)} + \cdots + g_{r-1}^{(k)} < g_{r+1}^{(k)} - 1 < g_r^{(k)} \) for all \(r \geq 3 \). Assume that \(3 \leq r \leq k \). Then, clearly,

\[
g_1^{(k)} + g_2^{(k)} + \cdots + g_{r-1}^{(k)} = g_r^{(k)} < g_{r+1}^{(k)} - 1 < g_r^{(k)}.
\]

Now, assume that \(r > k \). By induction on \(r \), clearly,

\[
g_1^{(k)} + g_2^{(k)} + \cdots + g_k^{(k)} = g_{k+1}^{(k)} < g_{k+2}^{(k)} - 1 < g_{k+2}^{(k)}.
\]

Assume true for \(r \) and consider \(r + 1 \). That is,

\[
g_1^{(k)} + \cdots + g_{r-1}^{(k)} + g_r^{(k)} < g_r^{(k)} + g_{r+1}^{(k)} - 1
\]

\[
= g_{r-1}^{(k)} + g_{r-2}^{(k)} + \cdots + g_{r-k+1}^{(k)} + g_{r+1}^{(k)} - 1
\]

\[
= g_{r+1}^{(k)} + g_r^{(k)} + g_{r-1}^{(k)} + \cdots + g_{r-k}^{(k)} - 1 - g_r^{(k)}
\]

\[
= g_{r+2}^{(k)} - 1 - g_{r-k}^{(k)}
\]

\[
< g_{r+2}^{(k)} - 1.< g_{r+2}^{(k)}.
\]

Thus, in any cases, \(g_1^{(k)} + \cdots + g_{r-1}^{(k)} < g_{r+1}^{(k)} - 1 < g_r^{(k)} \) for all \(r \geq 3 \). This result is same that \(g_{r+1}^{(k)} - 1 \) is unattainable as a sum of terms in a subsequence of \(G^{(k)} - g_r^{(k)}, r \geq 3 \). Therefore, \(G^{(k)} - g_r^{(k)}, r \geq 3 \), is not complete.

In the Fibonacci sequence \(F \), \(F - F_r - F_s \) is not even weakly complete. In fact, \(G^{(k)} - g_r^{(k)} - g_s^{(k)} \), \(s < r \), is not complete. For example, if \(r = 2 \) and \(s = 1 \), then \(G^{(k)} - g_2^{(k)} - g_1^{(k)} \) does not contains 1. Thus \(G^{(k)} - g_r^{(k)} - g_s^{(k)} \) can never be complete. Then will \(G^{(k)} - g_r^{(k)} - g_s^{(k)} \) be good enough to be weakly complete? An answer can be given as following:
THEOREM 2.3. The sequence $G^{(k)} - g_{k+1}^{(k)} - g_{2k+1}^{(k)}$ is not weakly complete, $k \geq 2$.

Proof. If $k = 2$, then the proof is completed. Now, suppose that $k \geq 3$. We easily see that the number $g_{2k+1}^{(k)} + 1$ is unattainable as a sum of terms in a subsequence of $G^{(k)} - g_{k+1}^{(k)} - g_{2k+1}^{(k)}$. That is,

$$g_{1}^{(k)} + \cdots + g_{k}^{(k)} + g_{k+2}^{(k)} + \cdots + g_{2k}^{(k)} = g_{k+1}^{(k)} + g_{k+2} + \cdots + g_{2k}^{(k)} < g_{2k+1}^{(k)} + 1 < g_{2k+2}^{(k)}.$$

We will use this result as the basis of an induction that the number $n = g_{2k+1}^{(k)} + g_{k+1}^{(k)} + 1$ is unattainable for all $t = 1, 2, 3, \cdots$. The result is established, then, for $t = 1$. That is, the number $g_{2k+1}^{(k)} + g_{k+1}^{(k)} + 1$ is unattainable as a sum of a subsequence of $G^{(k)} - g_{k+1}^{(k)} - g_{2k+1}^{(k)}$. Suppose, for some value $t \geq 1$, that the number $n = g_{2k+1}^{(k)} + g_{k+1}^{(k)} + 1$ is unattainable as a sum of a subsequence of $G^{(k)} - g_{k+1}^{(k)} - g_{2k+1}^{(k)}$. Consider now the number $g_{2k+1}^{(k)} + g_{k(t+1)}^{(k)} + 1$, that is, $n = g_{2k+1}^{(k)} + g_{k(t+1)}^{(k)} + 1$. After the disposal of $g_{k+1}^{(k)}$ and $g_{2k+1}^{(k)}$, the numbers we have display

$$g_{1}^{(k)}, g_{2}^{(k)}, \cdots, g_{k}^{(k)}, g_{k+2}^{(k)}, \cdots, g_{2k}^{(k)}, g_{2k+2}^{(k)}, \cdots, g_{t+1}^{(k)}, g_{t}^{(k)}, \cdots, g_{t+k}^{(k)}.$$

The number $g_{2k+1}^{(k)} + g_{k}^{(k)}$ is attainable and

$$g_{2k+1}^{(k)} + g_{t+k}^{(k)} < g_{2k+1}^{(k)} + g_{t+k}^{(k)} + 1 < g_{2k+1}^{(k)} + 1.$$

With the number $g_{2k+1}^{(k)} + g_{t+k}^{(k)} + 1$ in hand, we get

$$g_{2k+1}^{(k)} + g_{t+k}^{(k)} + 1 - (g_{t+k+1}^{(k)} + \cdots + g_{t+k+1}^{(k)} + \cdots + g_{t+k+1}^{(k)}) = g_{2k+1}^{(k)} + g_{t+k}^{(k)} + 1,$$

is unattainable where the $g_{t+k+1}^{(k)} + \cdots + g_{t+k+1}^{(k)}$ is attainable. Therefore, if $g_{2k+1}^{(k)} + g_{t+k}^{(k)} + 1$ is unattainable, so is $g_{2k+1}^{(k)} + g_{t+k}^{(k)} + 1$. By induction, then, $g_{2k+1}^{(k)} + g_{t+k}^{(k)} + 1$ is unattainable for all $t = 1, 2, 3, \cdots$. Since there are numbers $g_{2k+1}^{(k)} + g_{t+k}^{(k)} + 1$ which exceed every choice of positive integer, the sequence $G^{(k)} - g_{k+1}^{(k)} - g_{2k+1}^{(k)}$ is not even weakly complete.
A completeness on generalized Fibonacci sequences

By the above theorem, \(G^{(k)} - \frac{g_k^{(k)}}{g_2^{(k)}} \) is not even weakly complete, in general. We consider some \(k \)-generalized Fibonacci sequence \(G^{(k)} \):

i) \(G^{(4)} = (1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, 10671, \cdots) \)

ii) \(G^{(5)} = (1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930, 13624, \cdots) \)

iii) \(G^{(6)} = (1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617, 15109, \cdots) \)

iv) \(G^{(7)} = (1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936, 15808, \cdots) \)

v) \(G^{(8)} = (1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, 16128, \cdots) \)

For example, consider

\[
G^{(4)} - 8 - 108 = (1, 1, 2, 4, 15, 29, 56, 108, 401, 773, 1490, 2872, 5536, 10671, \cdots)
\]

882 is unattainable as a sum of terms in a subsequence of \(G^{(4)} - 8 - 108 \), since 882 = \(g_9^{(4)} + g_{12}^{(4)} + 1 \).

Let \(L_n \) be the \(n \)th Lucas number. That is, \(L_n = F_{n+1} + F_{n-1} \) for all \(n = 1, 2, 3, \cdots \). Thus we have \(L_1 = 1, L_2 = 3, L_3 = 4 \), and so on. Since the Fibonacci numbers are connected by the fundamental recursion \(F_n = F_{n-1} + F_{n-2} \), it follows immediately that the Lucas numbers are likewise related:

(2.1) \(L_n = L_{n-1} + L_{n-2} \) for \(n > 2 \).

Let \(G^{(k)}_i = (g_0^{(k)} , g_1^{(k)} , g_2^{(k)} , \cdots) \) be the \(k \)-generalized Fibonacci sequence such that \(g_0^{(k)} = g_1^{(k)} = \cdots = g_{k-2}^{(k)} = 0, g_{k-1}^{(k)} = g_k^{(k)} = 1 \). Now, we define the \(k \)-generalized Lucas sequence \(\{l_n^{(k)}\} \) by the following as

(2.2) \[l_{n+1}^{(k)} = g_n^{(k)} + g_{n+k}^{(k)}, \quad n = 0, 1, 2, \cdots. \]

That is, \(l_1^{(k)} = g_0^{(k)} + g_k^{(k)} \), \(l_2^{(k)} = g_1^{(k)} + g_{k+1}^{(k)} \), \cdots, \(l_k^{(k)} = g_{k-1}^{(k)} + g_{2k-1}^{(k)} \). Then, for \(n > k \)

\[
l_{n+1}^{(k)} = g_n^{(k)} + g_{n+k}^{(k)} = (g_{n-1}^{(k)} + \cdots + g_{k-1}^{(k)}) + (g_{n+k-1}^{(k)} + \cdots + g_{n+k-k}^{(k)})
\]

\[
= (g_{n-1}^{(k)} + g_{n+k-1}^{(k)}) + \cdots + (g_{n-k}^{(k)} + g_n^{(k)})
\]

(2.3) \[l_n^{(k)} + l_{n-1}^{(k)} + \cdots + l_{n-k+1}^{(k)}. \]
THEOREM 2.4. The k-generalized Lucas sequence is not weakly complete for $k \geq 2$.

Proof. Let $\mathcal{L}^{(k)} = (l_1^{(k)}, l_2^{(k)}, l_3^{(k)}, \ldots)$ be the k-generalized Lucas sequence. Since $l_1^{(k)} + \cdots + l_{k-1}^{(k)} = g_{2k-1}^{(k)} - g_{k-1}^{(k)} < g_{2k-1}^{(k)} < l_k^{(k)}$, $g_{2k-1}^{(k)}$ is unattainable as a sum of a subsequence of $\mathcal{L}^{(k)}$. We will use this result as the basis of an induction that the number $m = l_n^{(k)} + g_{2k-1}^{(k)}$ is unattainable for $n \geq k + 1$. By induction on n, if $n = k + 1$, $l_1^{(k)} + \cdots + l_k^{(k)} = l_{k+1}^{(k)} < l_{k+1}^{(k)} + g_{2k-1}^{(k)}$. Since

$$l_{k+2}^{(k)} = l_{k+1}^{(k)} + l_k^{(k)} + \cdots + l_2^{(k)} = l_{k+1}^{(k)} + (g_{k-1}^{(k)} + g_{2k-1}^{(k)}) + l_{k-1}^{(k)} + \cdots + l_2^{(k)},$$

and

$$l_{k+1}^{(k)} + g_{2k-1}^{(k)} < l_{k+2}^{(k)}.$$ So, $l_1^{(k)} + \cdots + l_k^{(k)} = l_{k+1}^{(k)} < l_{k+1}^{(k)} + g_{2k-1}^{(k)} < l_{k+2}^{(k)}$. Thus, $l_{k+1}^{(k)} + g_{2k-1}^{(k)}$ is unattainable as a sum of a subsequence of $\mathcal{L}^{(k)}$. Suppose, for some value $n > k + 1$, that the number $m = l_n^{(k)} + g_{2k-1}^{(k)}$. The number $l_n^{(k)}$ is attainable and

$$l_{n-(k-1)}^{(k)} + \cdots + l_n^{(k)} = l_{n+1}^{(k)} < l_{n+1}^{(k)} + g_{2k-1}^{(k)} < l_{n+2}^{(k)}.$$

With the number $l_n^{(k)} + g_{2k-1}^{(k)}$ in hand, we get

$$l_n^{(k)} + g_{2k-1}^{(k)} = (l_{n+1}^{(k)} + g_{2k-1}^{(k)}) - (l_{n-1}^{(k)} + \cdots + l_{n-(k-1)}^{(k)}),$$

is unattainable where the $l_{n-1}^{(k)} + \cdots + l_{n-(k-1)}^{(k)}$ is attainable. Therefore, if $l_n^{(k)} + g_{2k-1}^{(k)}$ is unattainable, so is $l_{n+1}^{(k)} + g_{2k-1}^{(k)}$. By induction, then, $l_n^{(k)} + g_{2k-1}^{(k)}$ is unattainable for all $n \geq k + 1$. The proof is completed.

3. Other Results

In case $k = 3$, the fundamental recurrence relation $g_{n+1}^{(3)} = g_n^{(3)} + g_{n+1}^{(3)} + g_{n-2}^{(3)}$ can also be defined as the vector recurrence relation

$$\begin{pmatrix}
g_{n+1}^{(3)} \\
g_{n}^{(3)} \\
g_{n+1}^{(3)}
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{pmatrix} \begin{pmatrix}
g_{n-1}^{(3)} \\
g_{n}^{(3)} \\
g_{n+1}^{(3)}
\end{pmatrix}$$

(3.1)
A completeness on generalized Fibonacci sequences

which is visibly equivalent. In terms of the 3×3 matrix

\begin{equation}
Q = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{bmatrix},
\end{equation}

applying (3.1) n times, we have

\begin{equation}
\begin{pmatrix}
g_{n+1}^{(3)} \\
g_{n+2}^{(3)} \\
g_{n+3}^{(3)}
\end{pmatrix} = Q^n \begin{pmatrix}
g_{1}^{(3)} \\
g_{2}^{(3)} \\
g_{3}^{(3)}
\end{pmatrix}
\end{equation}

Similarly, for the k-generalized Fibonacci sequence, the matrix and the vector recurrence relation is;

\begin{equation}
\begin{pmatrix}
g_{n+1}^{(k)} \\
g_{n+2}^{(k)} \\
\vdots \\
g_{n+k}^{(k)}
\end{pmatrix} = Q^n \begin{pmatrix}
g_{1}^{(k)} \\
g_{2}^{(k)} \\
\vdots \\
g_{k}^{(k)}
\end{pmatrix},
\end{equation}

where

\begin{equation}
Q = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1
\end{bmatrix}_{k \times k}
\end{equation}

We have the following theorem by using the above facts.

THEOREM 3.1. For any positive integers $n \geq k, m \geq k$,

\begin{equation}
ge_{n+m}^{(k)} = g_{n}^{(k)} e_{m-(k-1)}^{(k)} + (g_{n}^{(k)} + g_{n-1}^{(k)}) e_{m-(k-2)}^{(k)} e_{n-2}^{(k)} e_{m-(k-3)}^{(k)} + (g_{n}^{(k)} + g_{n-1}^{(k)} + \cdots + g_{n+1}^{(k)}) e_{m}^{(k)}.
\end{equation}
Proof. For $G^{(k)}$, $k \geq 2$, since $g_1^{(k)} = 1$ and $g_2^{(k)} = 1$, we can replace the matrix Q in (3.5) with

$$Q = \begin{bmatrix} 0 & g_1^{(k)} & 0 & \cdots & 0 \\ 0 & 0 & g_1^{(k)} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & g_1^{(k)} \\ g_1^{(k)} & g_1^{(k)} & \cdots & g_1^{(k)} & g_2^{(k)} \end{bmatrix}_{k \times k}$$

Then

$$Q^n = \begin{bmatrix} g_{n-1}^{(k)} & g_{n-1}^{(k)} & g_{n-1}^{(k)} + g_{n-2}^{(k)} + g_{n-3}^{(k)} + \cdots + g_{n-k}^{(k)} \\ g_{n-2}^{(k)} & g_{n-2}^{(k)} & g_{n-2}^{(k)} + g_{n-3}^{(k)} + g_{n-4}^{(k)} + \cdots + g_{n-k}^{(k)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ g_{n-k}^{(k)} & g_{n-k}^{(k)} & g_{n-k}^{(k)} + \cdots + g_{n-3}^{(k)} + g_{n-2}^{(k)} \\ g_{n}^{(k)} & g_{n}^{(k)} & g_{n}^{(k)} + \cdots + g_{n-2}^{(k)} + g_{n-1}^{(k)} \end{bmatrix}$$

Since $Q^n Q^m = Q^{n+m}$, $g_{n+m}^{(k)} = (Q^{n+m})_{k1}$.

In the Fibonacci numbers, $F_n \mid F_{tn}$ for all $t = 1, 2, 3, \ldots$, since

$$F_{n+m} = F_{n-1} F_m + F_n F_{m+1}$$

What can we think about the divisibility on k-generalized Fibonacci numbers? For example, consider $g_6^{(7)}$ and $g_{12}^{(7)}$ in the 7-generalized Fibonacci sequence $\{g_n^{(7)}\}$. 6|12 but 16 \(\not|\) 1004. And, consider $g_4^{(6)}$, $g_8^{(6)}$ and $g_{16}^{(6)}$ in the 6-generalized Fibonacci sequence. 4|8 and 4|16 but 4 \(\not|\) 63 and 4 \(\not|\) 15109. Thus, we have established the following theorem.

Theorem 3.2. For the k-generalized Fibonacci sequence, there exists positive integer t such that $g_n^{(k)} \not| g_t^{(k)}$.

Acknowledgements. Special thanks go to Prof. S. G. Lee for his kind comments and the referee for a thorough and careful reading of the original draft.
A completeness on generalized Fibonacci sequences

References

DEPARTMENT OF MATHEMATICS, HNSEO UNIVERSITY, SEOSAN 356-820, KOREA